downpour_worker.cc 35.1 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/platform/cpu_helper.h"
W
wanghuancoder 已提交
17 18 19 20 21 22 23

namespace paddle {
namespace framework {
class LoDTensor;
class Variable;
}  // namespace framework
}  // namespace paddle
24

25 26 27 28 29
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

30 31 32
namespace paddle {
namespace framework {

33
void DownpourWorker::Initialize(const TrainerDesc& desc) {
34
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
35
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
36 37 38 39
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
40
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
41 42 43
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
45 46 47
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
48
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
49 50
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
51
    label_var_name_[table_id] = table.label_var_name();
52
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
53 54
  }

D
dongdaxiang 已提交
55
  for (int i = 0; i < param_.dense_table_size(); ++i) {
56 57 58
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
59
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
60 61 62
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
63
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
64 65 66 67
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

Z
zhang wenhui 已提交
68 69 70 71 72 73 74
  flag_partial_push_ = false;
  for (auto& m : param_.program_config(0).partial_pushdense_condtable_map()) {
    cond2table_map_[m.key()] = m.value();
    condvalue_set_.insert(m.value());
    flag_partial_push_ = true;
  }

75
  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
76
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
77 78
    skip_ops_[i] = param_.skip_ops(i);
  }
79

80 81 82 83
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

84 85 86
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

87
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
88
  fetch_config_ = desc.fetch_config();
89
  use_cvm_ = desc.use_cvm();
90 91
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
92 93
  scale_sparse_gradient_with_batch_size_ =
      desc.scale_sparse_gradient_with_batch_size();
94
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
95
  dump_slot_ = desc.dump_slot();
96
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
97 98 99
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
123 124
}

125
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
126 127 128
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
129
  uint64_t table_id = static_cast<uint64_t>(
130
      param_.program_config(0).pull_sparse_table_id(table_idx));
131

H
heqiaozhi 已提交
132 133 134 135 136 137 138
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
139 140 141
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
142
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
143 144 145
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
146
  size_t global_index = 0;
147
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
148 149
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
150
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
151 152 153
    if (fea_var == nullptr) {
      continue;
    }
154
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
155 156
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
157 158 159 160 161 162 163 164

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

165
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
166
    size_t fea_idx = 0;
167
    // tensor->lod()[0].size() == batch_size + 1
168 169
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
170 171 172 173
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
174 175
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
176 177 178 179 180 181 182 183
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
184
  uint64_t table_id = static_cast<uint64_t>(
185
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
186 187 188 189 190 191 192 193

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
194 195 196 197

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
198
  std::vector<float> init_value(table.fea_dim());
199 200 201 202
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
203 204 205
    if (var == nullptr) {
      continue;
    }
206
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
207
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
208 209 210
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
211 212 213
    if (var_emb == nullptr) {
      continue;
    }
214 215 216 217 218 219 220
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
221 222 223 224 225 226 227 228

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
229
    for (int index = 0; index < len; ++index) {
230
      if (use_cvm_ || no_cvm_) {
231 232 233
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
234 235 236 237
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
238 239 240 241
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
242 243
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
244 245 246
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
247 248 249 250 251
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
252 253 254 255
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
256 257 258
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
259
               sizeof(float) * table.emb_dim());
260 261
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
262 263 264
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
265
        fea_idx++;
266 267 268 269 270
      }
    }
  }
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
317
  for (size_t i = 0; i < len; ++i) {
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
T
Thunderbrook 已提交
395
                                     &pull_dense_status, true);
X
xujiaqi01 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

443 444 445
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
471
  double adjust_ins_weight_time = 0.0;
472 473 474 475
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
476
  double copy_table_time = 0.0;
477 478
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
479
  uint64_t total_inst = 0;
480 481 482 483 484
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

499
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
500
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
501 502 503 504
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
505 506 507
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
508 509 510 511
          break;
        }
      }
      timeline.Start();
512 513 514
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
515 516
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
517
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
518
      timeline.Start();
519 520 521
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
522
      total_time += timeline.ElapsedSec();
523 524 525 526
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
527
      total_time += timeline.ElapsedSec();
528 529 530 531 532 533 534 535 536 537
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
538 539 540 541 542 543 544 545 546 547 548 549 550 551
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
552
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
553
        op->Run(*thread_scope_, place_);
554
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
555 556 557 558 559 560
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

561 562 563 564 565 566 567 568 569 570 571
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
572 573
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
574
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
575 576
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
577 578
    }

579
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
580 581
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
582 583 584 585 586 587 588 589
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
590
        }
591 592 593 594
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
595
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
596 597
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
598 599 600
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
601
      }
602 603
    }

X
xujiaqi01 已提交
604 605 606 607 608 609 610 611 612 613 614 615
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

616
    if (need_to_push_dense_) {
617
      timeline.Start();
D
dongdaxiang 已提交
618 619
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
620 621 622
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
623 624
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
625
      }
626
      timeline.Pause();
627
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
628
      total_time += timeline.ElapsedSec();
629 630 631 632 633 634 635 636 637
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
638 639
      }

640 641
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
642 643 644
      }
    }

645
    if (need_to_push_sparse_) {
646 647 648
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
649 650 651 652 653 654
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
655

656 657 658
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
659

660 661 662
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
663 664 665
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
666 667
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
668 669 670 671
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
672 673
    }

D
dongdaxiang 已提交
674
    PrintFetchVars();
675
    thread_scope_->DropKids();
D
dongdaxiang 已提交
676
    total_inst += cur_batch;
677 678 679 680 681
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
682 683
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
684 685 686
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
687 688 689 690 691 692 693 694 695
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
696
        }
697 698 699 700 701 702 703 704 705 706 707
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
708 709
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
710
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
711 712
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
713
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
714 715
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
716 717
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
718 719
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
720 721 722 723 724 725 726 727
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
728
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
729 730
      }
    }
D
dongdaxiang 已提交
731
    timeline.Start();
732
  }
X
xujiaqi01 已提交
733 734 735 736 737
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
738 739
}

740
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
741
  VLOG(3) << "Begin to train files";
742
  platform::SetNumThreads(1);
743
  device_reader_->Start();
744 745
  int batch_cnt = 0;
  int cur_batch;
746
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
747 748 749 750 751 752 753
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
754
    // pull sparse here
D
dongdaxiang 已提交
755
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
756 757 758 759
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
760 761 762
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
763 764 765
          break;
        }
      }
766 767 768
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
769 770
      CollectLabelInfo(i);
      FillSparseValue(i);
771 772 773 774 775 776
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
777
    }
D
dongdaxiang 已提交
778
    VLOG(3) << "fill sparse value for all sparse table done.";
779 780 781

    // do computation here
    for (auto& op : ops_) {
782 783 784 785 786 787 788 789
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
          fprintf(stderr, "batch_size: %zu, ins_ids_vec: %s\n", batch_size,
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
            } else if (var->IsType<SelectedRows>()) {
              auto selected_rows = var->GetMutable<SelectedRows>();
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
832
        op->Run(*thread_scope_, place_);
833
#endif
834
      }
835 836
    }

837 838 839 840 841 842 843 844 845 846 847
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
848 849
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
850
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
851 852
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
853 854
    }

855 856
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
857 858
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
859 860 861 862 863 864 865 866
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
867
        }
868 869 870
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
871
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
872 873
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
H
heqiaozhi 已提交
874
      }
875 876
    }

X
xujiaqi01 已提交
877 878 879 880 881 882 883 884 885 886 887 888
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

889
    if (need_to_push_dense_) {
Z
zhang wenhui 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
      if (flag_partial_push_) {
        Variable* var = (*thread_scope_).FindVar("cond_tag");
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        // check type in python code
        int64_t* cond_value_batch = tensor->data<int64_t>();

        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));
          if (condvalue_set_.find(tid) != condvalue_set_.end()) {
            // common dense table must push dense
            if (cond2table_map_[cond_value_batch[0]] != tid) {
              // can't push dense
              continue;
            }
          }

          VLOG(3) << "push multitask dense gradient " << tid;
          fleet_ptr_->PushDenseVarsAsync(
              *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
              scale_datanorm_, cur_batch);
        }

      } else {
        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));

          fleet_ptr_->PushDenseVarsAsync(
              *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
              scale_datanorm_, cur_batch);
        }
924
      }
Z
zhang wenhui 已提交
925

926
      VLOG(3) << "push dense gradient done.";
927

928 929 930 931 932
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
933

934 935 936 937 938
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
939 940
      }

941 942 943
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
944 945
    }

946 947 948 949 950 951 952 953 954 955
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
956 957
      }

958 959 960
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
961 962
    }

963
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
964 965
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
966 967 968 969
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
970
    }
971
    if (need_dump_field_) {
H
hutuxian 已提交
972 973 974 975
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
976
    }
977

D
dongdaxiang 已提交
978
    PrintFetchVars();
979 980 981
    thread_scope_->DropKids();
    ++batch_cnt;
  }
H
hutuxian 已提交
982
  if (need_dump_field_ || need_dump_param_) {
983 984
    writer_.Flush();
  }
X
xujiaqi01 已提交
985 986 987 988 989
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
990 991 992 993
}

}  // end namespace framework
}  // end namespace paddle