downpour_worker.cc 34.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/platform/cpu_helper.h"
W
wanghuancoder 已提交
17 18 19 20 21 22 23

namespace paddle {
namespace framework {
class LoDTensor;
class Variable;
}  // namespace framework
}  // namespace paddle
24

25 26 27 28 29
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

30 31 32
namespace paddle {
namespace framework {

33
void DownpourWorker::Initialize(const TrainerDesc& desc) {
34
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
35
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
36 37 38 39
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
40
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
41 42 43
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
45 46 47
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
48
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
49 50
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
51
    label_var_name_[table_id] = table.label_var_name();
52
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
53 54
  }

D
dongdaxiang 已提交
55
  for (int i = 0; i < param_.dense_table_size(); ++i) {
56 57 58
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
59
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
60 61 62
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
63
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
64 65 66 67
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

Z
zhang wenhui 已提交
68 69 70 71 72 73 74
  flag_partial_push_ = false;
  for (auto& m : param_.program_config(0).partial_pushdense_condtable_map()) {
    cond2table_map_[m.key()] = m.value();
    condvalue_set_.insert(m.value());
    flag_partial_push_ = true;
  }

75
  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
76
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
77 78
    skip_ops_[i] = param_.skip_ops(i);
  }
79

80 81 82 83
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

84 85 86
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

87
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
88
  fetch_config_ = desc.fetch_config();
89
  use_cvm_ = desc.use_cvm();
90 91
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
92
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
93
  dump_slot_ = desc.dump_slot();
94
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
95 96 97
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
121 122
}

123
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
124 125 126
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
127
  uint64_t table_id = static_cast<uint64_t>(
128
      param_.program_config(0).pull_sparse_table_id(table_idx));
129

H
heqiaozhi 已提交
130 131 132 133 134 135 136
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
137 138 139
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
140
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
141 142 143
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
144
  size_t global_index = 0;
145
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
146 147
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
148
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
149 150 151
    if (fea_var == nullptr) {
      continue;
    }
152
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
153 154
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
155 156 157 158 159 160 161 162

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

163
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
164
    size_t fea_idx = 0;
165
    // tensor->lod()[0].size() == batch_size + 1
166 167
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
168 169 170 171
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
172 173
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
174 175 176 177 178 179 180 181
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
182
  uint64_t table_id = static_cast<uint64_t>(
183
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
184 185 186 187 188 189 190 191

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
192 193 194 195

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
196
  std::vector<float> init_value(table.fea_dim());
197 198 199 200
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
201 202 203
    if (var == nullptr) {
      continue;
    }
204
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
205
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
206 207 208
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
209 210 211
    if (var_emb == nullptr) {
      continue;
    }
212 213 214 215 216 217 218
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
219 220 221 222 223 224 225 226

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
227
    for (int index = 0; index < len; ++index) {
228
      if (use_cvm_ || no_cvm_) {
229 230 231
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
232 233 234 235
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
236 237 238 239
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
240 241
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
242 243 244
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
245 246 247 248 249
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
250 251 252 253
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
254 255 256
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
257
               sizeof(float) * table.emb_dim());
258 259
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
260 261 262
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
263
        fea_idx++;
264 265 266 267 268
      }
    }
  }
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
315
  for (size_t i = 0; i < len; ++i) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
T
Thunderbrook 已提交
393
                                     &pull_dense_status, true);
X
xujiaqi01 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

441 442 443
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
469
  double adjust_ins_weight_time = 0.0;
470 471 472 473
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
474
  double copy_table_time = 0.0;
475 476
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
477
  uint64_t total_inst = 0;
478 479 480 481 482
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

497
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
498
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
499 500 501 502
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
503 504 505
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
506 507 508 509
          break;
        }
      }
      timeline.Start();
510 511 512
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
513 514
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
515
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
516
      timeline.Start();
517 518 519
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
520
      total_time += timeline.ElapsedSec();
521 522 523 524
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
525
      total_time += timeline.ElapsedSec();
526 527 528 529 530 531 532 533 534 535
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
536 537 538 539 540 541 542 543 544 545 546 547 548 549
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
550
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
551
        op->Run(*thread_scope_, place_);
552
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
553 554 555 556 557 558
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

559 560 561 562 563 564 565 566 567 568 569
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
570 571
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
572
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
573 574
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
575 576
    }

577
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
578 579
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
580 581 582 583 584 585 586 587
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
588
        }
589 590 591 592
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
593
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
594
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
595 596 597
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
598
      }
599 600
    }

X
xujiaqi01 已提交
601 602 603 604 605 606 607 608 609 610 611 612
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

613
    if (need_to_push_dense_) {
614
      timeline.Start();
D
dongdaxiang 已提交
615 616
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
617 618 619
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
620 621
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
622
      }
623
      timeline.Pause();
624
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
625
      total_time += timeline.ElapsedSec();
626 627 628 629 630 631 632 633 634
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
635 636
      }

637 638
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
639 640 641
      }
    }

642
    if (need_to_push_sparse_) {
643 644 645
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
646 647 648 649 650 651
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
652

653 654 655
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
656

657 658 659
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
660 661 662
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
663 664
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
665 666 667 668
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
669 670
    }

D
dongdaxiang 已提交
671
    PrintFetchVars();
672
    thread_scope_->DropKids();
D
dongdaxiang 已提交
673
    total_inst += cur_batch;
674 675 676 677 678
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
679 680
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
681 682 683
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
684 685 686 687 688 689 690 691 692
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
693
        }
694 695 696 697 698 699 700 701 702 703 704
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
705 706
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
707
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
708 709
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
710
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
711 712
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
713 714
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
715 716
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
717 718 719 720 721 722 723 724
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
725
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
726 727
      }
    }
D
dongdaxiang 已提交
728
    timeline.Start();
729
  }
X
xujiaqi01 已提交
730 731 732 733 734
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
735 736
}

737
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
738
  VLOG(3) << "Begin to train files";
739
  platform::SetNumThreads(1);
740
  device_reader_->Start();
741 742
  int batch_cnt = 0;
  int cur_batch;
743
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
744 745 746 747 748 749 750
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
751
    // pull sparse here
D
dongdaxiang 已提交
752
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
753 754 755 756
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
757 758 759
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
760 761 762
          break;
        }
      }
763 764 765
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
766 767
      CollectLabelInfo(i);
      FillSparseValue(i);
768 769 770 771 772 773
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
774
    }
D
dongdaxiang 已提交
775
    VLOG(3) << "fill sparse value for all sparse table done.";
776 777 778

    // do computation here
    for (auto& op : ops_) {
779 780 781 782 783 784 785 786
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
          fprintf(stderr, "batch_size: %zu, ins_ids_vec: %s\n", batch_size,
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
            } else if (var->IsType<SelectedRows>()) {
              auto selected_rows = var->GetMutable<SelectedRows>();
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
829
        op->Run(*thread_scope_, place_);
830
#endif
831
      }
832 833
    }

834 835 836 837 838 839 840 841 842 843 844
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
845 846
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
847
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
848 849
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
850 851
    }

852 853
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
854 855
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
856 857 858 859 860 861 862 863
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
864
        }
865 866 867
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
868
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
869
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
H
heqiaozhi 已提交
870
      }
871 872
    }

X
xujiaqi01 已提交
873 874 875 876 877 878 879 880 881 882 883 884
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

885
    if (need_to_push_dense_) {
Z
zhang wenhui 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
      if (flag_partial_push_) {
        Variable* var = (*thread_scope_).FindVar("cond_tag");
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        // check type in python code
        int64_t* cond_value_batch = tensor->data<int64_t>();

        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));
          if (condvalue_set_.find(tid) != condvalue_set_.end()) {
            // common dense table must push dense
            if (cond2table_map_[cond_value_batch[0]] != tid) {
              // can't push dense
              continue;
            }
          }

          VLOG(3) << "push multitask dense gradient " << tid;
          fleet_ptr_->PushDenseVarsAsync(
              *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
              scale_datanorm_, cur_batch);
        }

      } else {
        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));

          fleet_ptr_->PushDenseVarsAsync(
              *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
              scale_datanorm_, cur_batch);
        }
920
      }
Z
zhang wenhui 已提交
921

922
      VLOG(3) << "push dense gradient done.";
923

924 925 926 927 928
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
929

930 931 932 933 934
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
935 936
      }

937 938 939
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
940 941
    }

942 943 944 945 946 947 948 949 950 951
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
952 953
      }

954 955 956
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
957 958
    }

959
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
960 961
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
962 963 964 965
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
966
    }
967
    if (need_dump_field_) {
H
hutuxian 已提交
968 969 970 971
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
972
    }
973

D
dongdaxiang 已提交
974
    PrintFetchVars();
975 976 977
    thread_scope_->DropKids();
    ++batch_cnt;
  }
H
hutuxian 已提交
978
  if (need_dump_field_ || need_dump_param_) {
979 980
    writer_.Flush();
  }
X
xujiaqi01 已提交
981 982 983 984 985
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
986 987 988 989
}

}  // end namespace framework
}  // end namespace paddle