downpour_worker.cc 18.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17 18 19 20 21
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

22
void DownpourWorker::Initialize(const TrainerDesc& desc) {
23
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
24
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
25 26 27 28
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
29
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
30 31 32
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
33
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
34 35 36
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
37
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
38 39
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
40
    label_var_name_[table_id] = table.label_var_name();
41 42
  }

D
dongdaxiang 已提交
43
  for (int i = 0; i < param_.dense_table_size(); ++i) {
44 45 46
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
47
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
48 49 50
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
51
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
52 53 54 55 56
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
57
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
58 59
    skip_ops_[i] = param_.skip_ops(i);
  }
60

61 62 63
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

64
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
65
  fetch_config_ = desc.fetch_config();
66
  use_cvm_ = desc.use_cvm();
67 68
}

69
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
70
  uint64_t table_id = static_cast<uint64_t>(
71
      param_.program_config(0).pull_sparse_table_id(table_idx));
72

H
heqiaozhi 已提交
73 74 75 76 77 78 79
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
80 81 82
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
83
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
84 85 86
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
87
  size_t global_index = 0;
88
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
89 90
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
91
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
92 93 94
    if (fea_var == nullptr) {
      continue;
    }
95
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
96 97
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
98
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
99
    size_t fea_idx = 0;
100
    // tensor->lod()[0].size() == batch_size + 1
101 102
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
103 104 105 106
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
107 108
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
109 110 111 112 113 114 115 116
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
117
  uint64_t table_id = static_cast<uint64_t>(
118
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
119 120 121 122 123 124 125 126

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
127 128 129 130

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
131
  std::vector<float> init_value(table.fea_dim());
132 133 134 135
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
136 137 138
    if (var == nullptr) {
      continue;
    }
139
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
140
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
141 142 143 144 145 146 147 148 149 150
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
D
dongdaxiang 已提交
151
    for (int index = 0; index < len; ++index) {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      if (use_cvm_) {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
168
               sizeof(float) * table.emb_dim());
169
        fea_idx++;
170 171 172 173 174
      }
    }
  }
}

175 176 177
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
209
  uint64_t total_inst = 0;
210 211
  double op_sum_time = 0;
  std::unordered_map<std::string, double> op_to_time;
212 213 214 215 216 217
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
218
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
219 220 221 222
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
223 224 225
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
226 227 228 229 230 231 232 233 234
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
235
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
236
      timeline.Start();
237 238 239
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
240
      total_time += timeline.ElapsedSec();
241 242 243 244
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
245
      total_time += timeline.ElapsedSec();
246 247 248 249 250 251 252 253 254 255 256 257 258 259
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
260
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
261
        op->Run(*thread_scope_, place_);
262
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
263 264 265 266 267 268
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

269
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
270 271
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
272 273 274 275 276 277 278 279
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
280
        }
281 282 283 284
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
285
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_);
286 287 288
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
289
      }
290 291 292
    }

    if (need_to_push_dense_) {
293
      timeline.Start();
D
dongdaxiang 已提交
294 295
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
296 297 298 299 300
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }
301
      timeline.Pause();
302
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
303
      total_time += timeline.ElapsedSec();
304 305 306 307 308 309 310 311 312
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
313 314
      }

315 316
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
317 318 319
      }
    }

320
    if (need_to_push_sparse_) {
321 322 323
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
324 325 326 327 328 329
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
330

331 332 333
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
334

335 336 337
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
338 339 340
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
341 342
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
343 344 345 346
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
347 348
    }

D
dongdaxiang 已提交
349
    PrintFetchVars();
350
    thread_scope_->DropKids();
D
dongdaxiang 已提交
351
    total_inst += cur_batch;
352 353 354 355 356 357 358 359
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
360 361 362 363 364 365 366 367 368
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
369
        }
370 371 372 373 374 375 376 377 378 379 380
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
381 382
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
383 384 385 386 387 388 389 390 391 392
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
393
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
394 395
      }
    }
D
dongdaxiang 已提交
396
    timeline.Start();
397
  }
398 399
}

400
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
401
  VLOG(3) << "Begin to train files";
402
  platform::SetNumThreads(1);
403
  device_reader_->Start();
404 405
  int batch_cnt = 0;
  int cur_batch;
406
  while ((cur_batch = device_reader_->Next()) > 0) {
407
    // pull sparse here
D
dongdaxiang 已提交
408
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
409 410 411 412
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
413 414 415
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
416 417 418 419 420 421
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
422 423 424
      CollectLabelInfo(i);
      FillSparseValue(i);
    }
D
dongdaxiang 已提交
425
    VLOG(3) << "fill sparse value for all sparse table done.";
426 427 428

    // do computation here
    for (auto& op : ops_) {
429 430 431 432 433 434 435 436 437 438
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
439 440
    }

441 442
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
443 444
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
445 446 447 448 449 450 451 452
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
453
        }
454 455 456
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
457
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_);
H
heqiaozhi 已提交
458
      }
459 460
    }

461
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
462 463
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
464 465 466 467 468 469 470
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }

      VLOG(3) << "push dense gradient done.";
471

472 473 474 475 476
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
477

478 479 480 481 482
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
483 484
      }

485 486 487
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
488 489
    }

490 491 492 493 494 495 496 497 498 499
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
500 501
      }

502 503 504
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
505 506
    }

507
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
508 509
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
510 511 512 513
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
514
    }
515

D
dongdaxiang 已提交
516
    PrintFetchVars();
517 518 519 520 521 522 523
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle