downpour_worker.cc 33.7 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/platform/cpu_helper.h"
W
wanghuancoder 已提交
17 18 19 20 21 22 23

namespace paddle {
namespace framework {
class LoDTensor;
class Variable;
}  // namespace framework
}  // namespace paddle
24

25 26 27 28 29
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

30 31 32
namespace paddle {
namespace framework {

33
void DownpourWorker::Initialize(const TrainerDesc& desc) {
34
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
35
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
36 37 38 39
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
40
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
41 42 43
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
45 46 47
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
48
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
49 50
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
51
    label_var_name_[table_id] = table.label_var_name();
52
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
53 54
  }

D
dongdaxiang 已提交
55
  for (int i = 0; i < param_.dense_table_size(); ++i) {
56 57 58
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
59
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
60 61 62
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
63
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
64 65 66 67 68
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
69
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
70 71
    skip_ops_[i] = param_.skip_ops(i);
  }
72

73 74 75 76
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

77 78 79
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

80
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
81
  fetch_config_ = desc.fetch_config();
82
  use_cvm_ = desc.use_cvm();
83 84
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
85
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
86
  dump_slot_ = desc.dump_slot();
87
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
88 89 90
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
114 115
}

116
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
117 118 119
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
120
  uint64_t table_id = static_cast<uint64_t>(
121
      param_.program_config(0).pull_sparse_table_id(table_idx));
122

H
heqiaozhi 已提交
123 124 125 126 127 128 129
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
130 131 132
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
133
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
134 135 136
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
137
  size_t global_index = 0;
138
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
139 140
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
141
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
142 143 144
    if (fea_var == nullptr) {
      continue;
    }
145
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
146 147
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
148 149 150 151 152 153 154 155

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

156
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
157
    size_t fea_idx = 0;
158
    // tensor->lod()[0].size() == batch_size + 1
159 160
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
161 162 163 164
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
165 166
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
167 168 169 170 171 172 173 174
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
175
  uint64_t table_id = static_cast<uint64_t>(
176
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
177 178 179 180 181 182 183 184

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
185 186 187 188

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
189
  std::vector<float> init_value(table.fea_dim());
190 191 192 193
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
194 195 196
    if (var == nullptr) {
      continue;
    }
197
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
198
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
199 200 201
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
202 203 204
    if (var_emb == nullptr) {
      continue;
    }
205 206 207 208 209 210 211
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
212 213 214 215 216 217 218 219

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
220
    for (int index = 0; index < len; ++index) {
221
      if (use_cvm_ || no_cvm_) {
222 223 224
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
225 226 227 228
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
229 230 231 232
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
233 234
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
235 236 237
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
238 239 240 241 242
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
243 244 245 246
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
247 248 249
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
250
               sizeof(float) * table.emb_dim());
251 252
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
253 254 255
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
256
        fea_idx++;
257 258 259 260 261
      }
    }
  }
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
308
  for (size_t i = 0; i < len; ++i) {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
T
Thunderbrook 已提交
386
                                     &pull_dense_status, true);
X
xujiaqi01 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

434 435 436
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
462
  double adjust_ins_weight_time = 0.0;
463 464 465 466
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
467
  double copy_table_time = 0.0;
468 469
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
470
  uint64_t total_inst = 0;
471 472 473 474 475
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

490
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
491
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
492 493 494 495
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
496 497 498
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
499 500 501 502
          break;
        }
      }
      timeline.Start();
503 504 505
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
506 507
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
508
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
509
      timeline.Start();
510 511 512
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
513
      total_time += timeline.ElapsedSec();
514 515 516 517
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
518
      total_time += timeline.ElapsedSec();
519 520 521 522 523 524 525 526 527 528
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
529 530 531 532 533 534 535 536 537 538 539 540 541 542
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
543
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
544
        op->Run(*thread_scope_, place_);
545
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
546 547 548 549 550 551
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

552 553 554 555 556 557 558 559 560 561 562
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
563 564
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
565
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
566 567
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
568 569
    }

570
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
571 572
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
573 574 575 576 577 578 579 580
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
581
        }
582 583 584 585
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
586
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
587
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
588 589 590
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
591
      }
592 593
    }

X
xujiaqi01 已提交
594 595 596 597 598 599 600 601 602 603 604 605
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

606
    if (need_to_push_dense_) {
607
      timeline.Start();
D
dongdaxiang 已提交
608 609
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
610 611 612
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
613 614
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
615
      }
616
      timeline.Pause();
617
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
618
      total_time += timeline.ElapsedSec();
619 620 621 622 623 624 625 626 627
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
628 629
      }

630 631
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
632 633 634
      }
    }

635
    if (need_to_push_sparse_) {
636 637 638
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
639 640 641 642 643 644
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
645

646 647 648
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
649

650 651 652
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
653 654 655
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
656 657
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
658 659 660 661
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
662 663
    }

D
dongdaxiang 已提交
664
    PrintFetchVars();
665
    thread_scope_->DropKids();
D
dongdaxiang 已提交
666
    total_inst += cur_batch;
667 668 669 670 671
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
672 673
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
674 675 676
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
677 678 679 680 681 682 683 684 685
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
686
        }
687 688 689 690 691 692 693 694 695 696 697
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
698 699
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
700
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
701 702
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
703
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
704 705
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
706 707
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
708 709
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
710 711 712 713 714 715 716 717
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
718
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
719 720
      }
    }
D
dongdaxiang 已提交
721
    timeline.Start();
722
  }
X
xujiaqi01 已提交
723 724 725 726 727
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
728 729
}

730
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
731
  VLOG(3) << "Begin to train files";
732
  platform::SetNumThreads(1);
733
  device_reader_->Start();
734 735
  int batch_cnt = 0;
  int cur_batch;
736
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
737 738 739 740 741 742 743
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
744
    // pull sparse here
D
dongdaxiang 已提交
745
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
746 747 748 749
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
750 751 752
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
753 754 755
          break;
        }
      }
756 757 758
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
759 760
      CollectLabelInfo(i);
      FillSparseValue(i);
761 762 763 764 765 766
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
767
    }
D
dongdaxiang 已提交
768
    VLOG(3) << "fill sparse value for all sparse table done.";
769 770 771

    // do computation here
    for (auto& op : ops_) {
772 773 774 775 776 777 778 779
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
          fprintf(stderr, "batch_size: %zu, ins_ids_vec: %s\n", batch_size,
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
            } else if (var->IsType<SelectedRows>()) {
              auto selected_rows = var->GetMutable<SelectedRows>();
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
822
        op->Run(*thread_scope_, place_);
823
#endif
824
      }
825 826
    }

827 828 829 830 831 832 833 834 835 836 837
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
838 839
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
840
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
841 842
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
843 844
    }

845 846
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
847 848
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
849 850 851 852 853 854 855 856
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
857
        }
858 859 860
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
861
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
862
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
H
heqiaozhi 已提交
863
      }
864 865
    }

X
xujiaqi01 已提交
866 867 868 869 870 871 872 873 874 875 876 877
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

878
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
879 880
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
881 882 883
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
884 885
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
886 887
      }
      VLOG(3) << "push dense gradient done.";
888

889 890 891 892 893
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
894

895 896 897 898 899
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
900 901
      }

902 903 904
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
905 906
    }

907 908 909 910 911 912 913 914 915 916
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
917 918
      }

919 920 921
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
922 923
    }

924
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
925 926
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
927 928 929 930
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
931
    }
932
    if (need_dump_field_) {
H
hutuxian 已提交
933 934 935 936
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
937
    }
938

D
dongdaxiang 已提交
939
    PrintFetchVars();
940 941 942
    thread_scope_->DropKids();
    ++batch_cnt;
  }
H
hutuxian 已提交
943
  if (need_dump_field_ || need_dump_param_) {
944 945
    writer_.Flush();
  }
X
xujiaqi01 已提交
946 947 948 949 950
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
951 952 953 954
}

}  // end namespace framework
}  // end namespace paddle