downpour_worker.cc 32.0 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
18
#include "paddle/fluid/platform/cpu_helper.h"
19
#include "paddle/fluid/string/string_helper.h"
20

21 22 23 24 25
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

26 27 28
namespace paddle {
namespace framework {

29
void DownpourWorker::Initialize(const TrainerDesc& desc) {
30
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
31
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
32 33 34 35
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
36
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
37 38 39
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
40
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
41 42 43
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
45 46
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
47
    label_var_name_[table_id] = table.label_var_name();
48
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
49 50
  }

D
dongdaxiang 已提交
51
  for (int i = 0; i < param_.dense_table_size(); ++i) {
52 53 54
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
55
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
56 57 58
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
59
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
60 61 62 63 64
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
65
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
66 67
    skip_ops_[i] = param_.skip_ops(i);
  }
68

69 70 71 72
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

73 74 75
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

76
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
77
  fetch_config_ = desc.fetch_config();
78
  use_cvm_ = desc.use_cvm();
79 80
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
81
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
82
  dump_slot_ = desc.dump_slot();
83
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
84 85 86
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
110 111
}

112
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
113 114 115
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
116
  uint64_t table_id = static_cast<uint64_t>(
117
      param_.program_config(0).pull_sparse_table_id(table_idx));
118

H
heqiaozhi 已提交
119 120 121 122 123 124 125
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
126 127 128
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
129
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
130 131 132
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
133
  size_t global_index = 0;
134
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
135 136
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
137
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
138 139 140
    if (fea_var == nullptr) {
      continue;
    }
141
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
142 143
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
144 145 146 147 148 149 150 151

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

152
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
153
    size_t fea_idx = 0;
154
    // tensor->lod()[0].size() == batch_size + 1
155 156
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
157 158 159 160
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
161 162
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
163 164 165 166 167 168 169 170
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
171
  uint64_t table_id = static_cast<uint64_t>(
172
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
173 174 175 176 177 178 179 180

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
181 182 183 184

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
185
  std::vector<float> init_value(table.fea_dim());
186 187 188 189
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
190 191 192
    if (var == nullptr) {
      continue;
    }
193
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
194
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
195 196 197
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
198 199 200
    if (var_emb == nullptr) {
      continue;
    }
201 202 203 204 205 206 207
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
208 209 210 211 212 213 214 215

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
216
    for (int index = 0; index < len; ++index) {
217
      if (use_cvm_ || no_cvm_) {
218 219 220
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
221 222 223 224
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
225 226 227 228
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
229 230
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
231 232 233
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
234 235 236 237 238
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
239 240 241 242
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
243 244 245
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
246
               sizeof(float) * table.emb_dim());
247 248
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
249 250 251
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
252
        fea_idx++;
253 254 255 256 257
      }
    }
  }
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
304
  for (size_t i = 0; i < len; ++i) {
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
                                     &pull_dense_status);
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

430 431 432
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
458
  double adjust_ins_weight_time = 0.0;
459 460 461 462
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
463
  double copy_table_time = 0.0;
464 465
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
466
  uint64_t total_inst = 0;
467 468 469 470 471
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

486
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
487
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
488 489 490 491
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
492 493 494
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
495 496 497 498
          break;
        }
      }
      timeline.Start();
499 500 501
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
502 503
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
504
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
505
      timeline.Start();
506 507 508
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
509
      total_time += timeline.ElapsedSec();
510 511 512 513
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
514
      total_time += timeline.ElapsedSec();
515 516 517 518 519 520 521 522 523 524
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
525 526 527 528 529 530 531 532 533 534 535 536 537 538
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
539
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
540
        op->Run(*thread_scope_, place_);
541
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
542 543 544 545 546 547
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

564
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
565 566
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
567 568 569 570 571 572 573 574
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
575
        }
576 577 578 579
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
580
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
581
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
582 583 584
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
585
      }
586 587
    }

X
xujiaqi01 已提交
588 589 590 591 592 593 594 595 596 597 598 599
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

600
    if (need_to_push_dense_) {
601
      timeline.Start();
D
dongdaxiang 已提交
602 603
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
604 605 606
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
607 608
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
609
      }
610
      timeline.Pause();
611
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
612
      total_time += timeline.ElapsedSec();
613 614 615 616 617 618 619 620 621
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
622 623
      }

624 625
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
626 627 628
      }
    }

629
    if (need_to_push_sparse_) {
630 631 632
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
633 634 635 636 637 638
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
639

640 641 642
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
643

644 645 646
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
647 648 649
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
650 651
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
652 653 654 655
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
656 657
    }

D
dongdaxiang 已提交
658
    PrintFetchVars();
659
    thread_scope_->DropKids();
D
dongdaxiang 已提交
660
    total_inst += cur_batch;
661 662 663 664 665
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
666 667
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
668 669 670
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
671 672 673 674 675 676 677 678 679
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
680
        }
681 682 683 684 685 686 687 688 689 690 691
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
692 693
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
694
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
695 696
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
697
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
698 699
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
700 701
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
702 703
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
704 705 706 707 708 709 710 711
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
712
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
713 714
      }
    }
D
dongdaxiang 已提交
715
    timeline.Start();
716
  }
X
xujiaqi01 已提交
717 718 719 720 721
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
722 723
}

724
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
725
  VLOG(3) << "Begin to train files";
726
  platform::SetNumThreads(1);
727
  device_reader_->Start();
728 729
  int batch_cnt = 0;
  int cur_batch;
730
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
731 732 733 734 735 736 737
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
738
    // pull sparse here
D
dongdaxiang 已提交
739
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
740 741 742 743
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
744 745 746
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
747 748 749
          break;
        }
      }
750 751 752
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
753 754
      CollectLabelInfo(i);
      FillSparseValue(i);
755 756 757 758 759 760
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
761
    }
D
dongdaxiang 已提交
762
    VLOG(3) << "fill sparse value for all sparse table done.";
763 764 765

    // do computation here
    for (auto& op : ops_) {
766 767 768 769 770 771 772 773 774 775
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
776 777
    }

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

794 795
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
796 797
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
798 799 800 801 802 803 804 805
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
806
        }
807 808 809
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
810
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
811
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
H
heqiaozhi 已提交
812
      }
813 814
    }

X
xujiaqi01 已提交
815 816 817 818 819 820 821 822 823 824 825 826
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

827
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
828 829
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
830 831 832
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
833 834
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
835 836
      }
      VLOG(3) << "push dense gradient done.";
837

838 839 840 841 842
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
843

844 845 846 847 848
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
849 850
      }

851 852 853
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
854 855
    }

856 857 858 859 860 861 862 863 864 865
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
866 867
      }

868 869 870
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
871 872
    }

873
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
874 875
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
876 877 878 879
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
880
    }
881
    if (need_dump_field_) {
H
hutuxian 已提交
882 883 884 885
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
886
    }
887

D
dongdaxiang 已提交
888
    PrintFetchVars();
889 890 891
    thread_scope_->DropKids();
    ++batch_cnt;
  }
H
hutuxian 已提交
892
  if (need_dump_field_ || need_dump_param_) {
893 894
    writer_.Flush();
  }
X
xujiaqi01 已提交
895 896 897 898 899
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
900 901 902 903
}

}  // end namespace framework
}  // end namespace paddle