downpour_worker.cc 29.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/platform/cpu_helper.h"
18
#include "paddle/fluid/string/string_helper.h"
19

20 21 22 23 24
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

25 26 27
namespace paddle {
namespace framework {

28
void DownpourWorker::Initialize(const TrainerDesc& desc) {
29
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
30
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
31 32 33 34
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
35
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
36 37 38
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
39
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
40 41 42
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
43
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
44 45
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
46
    label_var_name_[table_id] = table.label_var_name();
47
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
48 49
  }

D
dongdaxiang 已提交
50
  for (int i = 0; i < param_.dense_table_size(); ++i) {
51 52 53
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
54
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
55 56 57
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
58
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
59 60 61 62 63
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
64
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
65 66
    skip_ops_[i] = param_.skip_ops(i);
  }
67

68 69 70 71
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

72 73 74
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

75
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
76
  fetch_config_ = desc.fetch_config();
77
  use_cvm_ = desc.use_cvm();
78
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
79
  dump_slot_ = desc.dump_slot();
80 81 82 83
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
84
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
85 86 87 88 89 90 91 92
  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
93 94 95
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
void DownpourWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void DownpourWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

template <typename T>
std::string PrintLodTensorType(LoDTensor* tensor, int64_t start, int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << tensor->data<T>()[i];
  }
  return os.str();
}

std::string PrintLodTensorIntType(LoDTensor* tensor, int64_t start,
                                  int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << static_cast<uint64_t>(tensor->data<int64_t>()[i]);
  }
  return os.str();
}

std::string PrintLodTensor(LoDTensor* tensor, int64_t start, int64_t end) {
  std::string out_val;
  if (tensor->type() == proto::VarType::FP32) {
    out_val = PrintLodTensorType<float>(tensor, start, end);
  } else if (tensor->type() == proto::VarType::INT64) {
    out_val = PrintLodTensorIntType(tensor, start, end);
  } else if (tensor->type() == proto::VarType::FP64) {
    out_val = PrintLodTensorType<double>(tensor, start, end);
  } else {
    out_val = "unsupported type";
  }
  return out_val;
}

std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index) {
  auto& dims = tensor->dims();
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    return {lod[index] * dims[1], lod[index + 1] * dims[1]};
  } else {
    return {index * dims[1], (index + 1) * dims[1]};
  }
}

bool CheckValidOutput(LoDTensor* tensor, int batch_size) {
  auto& dims = tensor->dims();
  if (dims.size() != 2) return false;
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    if (lod.size() != batch_size + 1) {
      return false;
    }
  } else {
    if (dims[0] != batch_size) {
      return false;
    }
  }
  return true;
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
void DownpourWorker::DumpParam() {
  std::string os;
  for (auto& param : dump_param_) {
    os.clear();
    os = param;
    Variable* var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
    os += PrintLodTensor(tensor, 0, len);
    writer_ << os;
  }
}

190
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
191
  uint64_t table_id = static_cast<uint64_t>(
192
      param_.program_config(0).pull_sparse_table_id(table_idx));
193

H
heqiaozhi 已提交
194 195 196 197 198 199 200
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
201 202 203
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
204
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
205 206 207
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
208
  size_t global_index = 0;
209
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
210 211
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
212
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
213 214 215
    if (fea_var == nullptr) {
      continue;
    }
216
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
217 218
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
219 220 221 222 223 224 225 226

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

227
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
228
    size_t fea_idx = 0;
229
    // tensor->lod()[0].size() == batch_size + 1
230 231
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
232 233 234 235
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
236 237
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
238 239 240 241 242 243 244 245
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
246
  uint64_t table_id = static_cast<uint64_t>(
247
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
248 249 250 251 252 253 254 255

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
256 257 258 259

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
260
  std::vector<float> init_value(table.fea_dim());
261 262 263 264
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
265 266 267
    if (var == nullptr) {
      continue;
    }
268
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
269
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
270 271 272
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
273 274 275
    if (var_emb == nullptr) {
      continue;
    }
276 277 278 279 280 281 282
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
283 284 285 286 287 288 289 290

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
291
    for (int index = 0; index < len; ++index) {
292 293 294 295
      if (use_cvm_) {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
296 297 298 299
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
300 301 302 303
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
304 305 306 307
        if (is_nid && index == tensor->lod()[0][nid_ins_index]) {
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
308 309 310 311 312
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
313 314 315 316
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
317 318 319
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
320
               sizeof(float) * table.emb_dim());
321 322 323 324
        if (is_nid && index == tensor->lod()[0][nid_ins_index]) {
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
325
        fea_idx++;
326 327 328 329 330
      }
    }
  }
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
  for (int i = 0; i < len; ++i) {
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

407 408 409
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
435
  double adjust_ins_weight_time = 0.0;
436 437 438 439 440 441
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
442
  uint64_t total_inst = 0;
443 444 445 446 447 448
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
449
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
450 451 452 453
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
454 455 456
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
457 458 459 460
          break;
        }
      }
      timeline.Start();
461 462 463
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
464 465
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
466
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
467
      timeline.Start();
468 469 470
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
471
      total_time += timeline.ElapsedSec();
472 473 474 475
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
476
      total_time += timeline.ElapsedSec();
477 478 479 480 481 482 483 484 485 486
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
487 488 489 490 491 492 493 494 495 496 497 498 499 500
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
501
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
502
        op->Run(*thread_scope_, place_);
503
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
504 505 506 507 508 509
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

526
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
527 528
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
529 530 531 532 533 534 535 536
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
537
        }
538 539 540 541
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
542
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
543
            dump_slot_, &sparse_push_keys_[tid]);
544 545 546
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
547
      }
548 549 550
    }

    if (need_to_push_dense_) {
551
      timeline.Start();
D
dongdaxiang 已提交
552 553
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
554 555 556
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
557 558
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
559
      }
560
      timeline.Pause();
561
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
562
      total_time += timeline.ElapsedSec();
563 564 565 566 567 568 569 570 571
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
572 573
      }

574 575
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
576 577 578
      }
    }

579
    if (need_to_push_sparse_) {
580 581 582
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
583 584 585 586 587 588
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
589

590 591 592
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
593

594 595 596
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
597 598 599
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
600 601
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
602 603 604 605
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
606 607
    }

D
dongdaxiang 已提交
608
    PrintFetchVars();
609
    thread_scope_->DropKids();
D
dongdaxiang 已提交
610
    total_inst += cur_batch;
611 612 613 614 615
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
616 617
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
618 619 620
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
621 622 623 624 625 626 627 628 629
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
630
        }
631 632 633 634 635 636 637 638 639 640 641
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
642 643
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
644 645
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
646
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
647 648
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
649 650
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
D
dongdaxiang 已提交
651 652 653 654 655 656 657 658
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
659
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
660 661
      }
    }
D
dongdaxiang 已提交
662
    timeline.Start();
663
  }
664 665
}

666
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
667
  VLOG(3) << "Begin to train files";
668
  platform::SetNumThreads(1);
669
  device_reader_->Start();
670 671
  int batch_cnt = 0;
  int cur_batch;
672
  while ((cur_batch = device_reader_->Next()) > 0) {
673
    // pull sparse here
D
dongdaxiang 已提交
674
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
675 676 677 678
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
679 680 681
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
682 683 684
          break;
        }
      }
685 686 687
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
688 689
      CollectLabelInfo(i);
      FillSparseValue(i);
690 691 692 693 694 695
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
696
    }
D
dongdaxiang 已提交
697
    VLOG(3) << "fill sparse value for all sparse table done.";
698 699 700

    // do computation here
    for (auto& op : ops_) {
701 702 703 704 705 706 707 708 709 710
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
711 712
    }

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

729 730
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
731 732
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
733 734 735 736 737 738 739 740
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
741
        }
742 743 744
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
745
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
746
            dump_slot_, &sparse_push_keys_[tid]);
H
heqiaozhi 已提交
747
      }
748 749
    }

750
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
751 752
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
753 754 755
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
756 757
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
758 759
      }
      VLOG(3) << "push dense gradient done.";
760

761 762 763 764 765
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
766

767 768 769 770 771
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
772 773
      }

774 775 776
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
777 778
    }

779 780 781 782 783 784 785 786 787 788
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
789 790
      }

791 792 793
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
794 795
    }

796
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
797 798
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
799 800 801 802
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
803
    }
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    if (need_dump_field_) {
      int batch_size = device_reader_->GetCurBatchSize();
      std::vector<std::string> ars(batch_size);
      for (auto& ar : ars) {
        ar.clear();
      }
      auto& ins_id_vec = device_reader_->GetInsIdVec();
      auto& ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto& field : dump_fields_) {
        Variable* var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
        for (int i = 0; i < batch_size; ++i) {
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
841 842 843
      if (need_dump_param_ && thread_id_ == 0) {
        DumpParam();
      }
844
    }
845

D
dongdaxiang 已提交
846
    PrintFetchVars();
847 848 849
    thread_scope_->DropKids();
    ++batch_cnt;
  }
850 851 852
  if (need_dump_field_) {
    writer_.Flush();
  }
853 854 855 856
}

}  // end namespace framework
}  // end namespace paddle