nn.py 78.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70
    'fc',
    'embedding',
    'conv2d',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
71
    'spectral_norm',
X
Xin Pan 已提交
72 73 74 75 76 77 78 79
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'relu',
    'clip',
    'clip_by_norm',
    'mul',
C
chengduo 已提交
80 81
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
Y
Yu Yang 已提交
82 83
]

84
OP_NAMEMAPPING = {
85 86 87 88 89 90 91 92
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
93
    'elementwise_mod': 'remainder',
94 95
}

Y
Yu Yang 已提交
96

97 98
def _get_reduce_dim(dim, input):
    """
99
    Internal function for reduce_sum, reduce_mean, reduce_prod.
100 101 102 103 104 105 106 107 108
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
109
                "The type of dim must be int, list, tuple or range, but received {}".format(
110
                    type(dim)
111 112
                )
            )
113 114 115 116 117 118 119 120 121 122
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


123
@dygraph_only
124 125 126
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
127 128 129 130
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
131
        op = getattr(_legacy_C_ops, op_name)
132 133 134
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
135 136
            op = getattr(
                _C_ops,
137 138
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
139 140 141
            out = op(x, y)

        if _in_legacy_dygraph():
142
            op = getattr(_legacy_C_ops, op_name)
143
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
144 145 146 147 148 149 150 151 152 153 154 155 156 157
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
158
    r"""
159 160
    :api_attr: Static Graph

161
    **Fully Connected Layer**
Y
Yu Yang 已提交
162

163 164 165
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
166
    which represents a fully connected weight matrix from each input unit to
167 168 169 170
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
171
    is not None, a bias variable will be created and added to the output.
172
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
173

174
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
175

176 177 178 179
    .. math::

        Out = Act({XW + b})

180
    When the input is a list of Tensor(or LoDTensor):
181 182 183

    .. math::

184
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
185 186 187

    In the above equation:

188 189 190
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
191
    * :math:`b`: The bias parameter created by this layer (if needed).
192
    * :math:`Act`: The activation function.
193
    * :math:`Out`: The output Tensor.
194 195 196

    .. code-block:: text

197 198 199 200 201 202 203 204 205 206 207 208 209 210
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
211 212 213 214 215 216 217 218 219 220 221 222 223
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
224
    Args:
225 226 227
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
228
        size(int): The number of output units in this layer, which also means the feature size of output
229 230
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
231
            two dimensions. If this happens, the multidimensional tensor will first be flattened
232 233
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
234
            dimensions will be flatten to form the first dimension of the final matrix (height of
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
250 251

    Raises:
252
        ValueError: If dimensions of the input Tensor is less than 2.
253 254 255 256

    Examples:
        .. code-block:: python

257
          import paddle.fluid as fluid
258 259
          import paddle
          paddle.enable_static()
260
          # when input is single tensor
261
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
262
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
263 264

          # when input are multiple tensors
265 266
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
267
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
268
    """
C
caoying03 已提交
269
    helper = LayerHelper("fc", **locals())
270
    check_type(input, 'input', (list, tuple, Variable), 'fc')
271 272
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
273
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
274
    dtype = helper.input_dtype()
275 276 277
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
278
    mul_results = []
279 280
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
281 282
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
283 284 285
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
286

287 288 289
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
290
        tmp = helper.create_variable_for_type_inference(dtype)
291 292 293 294 295 296
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
297 298 299 300
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
301
    else:
X
Xin Pan 已提交
302
        pre_bias = helper.create_variable_for_type_inference(dtype)
303 304 305 306 307 308
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
309 310 311 312
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
313 314


T
tangwei12 已提交
315
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
316 317 318 319 320 321 322 323 324
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
325
    r"""
326
    :api_attr: Static Graph
327

328 329 330 331 332 333 334 335 336 337 338 339
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

340
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
358

359 360 361 362
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
363

364
        Case 2:
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
380 381

    Args:
382 383 384 385 386 387
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
388
            affects the performance of the backwards gradient update. It is recommended to set
389
            True because sparse update is faster. But some optimizer does not support sparse update,
390
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
391 392 393 394 395
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
396
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
397 398 399 400 401 402
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
403
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
404
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
405
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
406 407 408
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
409

410
    Returns:
411
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
412

413 414
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
415

B
bdzhuxiaoning 已提交
416
          import paddle.fluid as fluid
417
          import numpy as np
418 419
          import paddle
          paddle.enable_static()
420

421 422
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
423
          # example 1
424 425 426 427 428 429 430 431 432
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
433
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
434 435 436
    """

    helper = LayerHelper('embedding', **locals())
437 438 439 440 441 442 443 444 445
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
446 447 448 449 450 451 452 453 454

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

455 456 457
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
458
    tmp = helper.create_variable_for_type_inference(dtype)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
477 478 479
    return tmp


480 481 482 483 484 485 486 487 488 489 490
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
491
    r"""
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
537
        'is_distributed': True,
538 539
    }
    # this is only for compatible with embedding op
540 541 542 543 544 545 546 547 548
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
549 550 551 552 553
    if len(outs) == 1:
        return outs[0]
    return outs


554 555 556 557 558 559 560 561 562 563 564
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
565
    r"""
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
611
        'is_distributed': True,
612 613
    }
    # this is only for compatible with embedding op
614 615 616 617 618 619 620 621 622
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
623
    if len(outs) == 1:
Y
yaoxuefeng 已提交
624 625 626 627
        return outs[0]
    return outs


628 629 630
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
644
        float32 now.
Y
yaoxuefeng 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
664 665 666
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
667 668 669 670 671 672
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
673 674 675 676 677 678 679 680 681 682 683 684 685
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
686
    if len(outs) == 1:
687 688 689 690
        return outs[0]
    return outs


691 692 693
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
694
    r"""
H
hutuxian 已提交
695 696 697 698 699 700 701
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
702
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
703
            contains the IDs information.
704
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
705
            each embedding vector respectively.
706
        dtype(str): The dtype refers to the data type of output tensor. Only supports
707
        float32 now.
H
hutuxian 已提交
708 709 710 711 712 713 714 715 716 717

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
718
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
719 720 721 722
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
723 724 725
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
726 727 728 729 730 731
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
732 733 734 735 736 737 738 739 740 741 742 743 744
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
745 746 747 748 749
    if len(outs) == 1:
        return outs[0]
    return outs


750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
765
    r"""
766 767
    :api_attr: Static Graph

C
chengduoZH 已提交
768
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
769
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
770
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
771
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
772 773 774 775 776 777
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
778
    for more details.
779 780 781
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
782

783
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
784

C
chengduoZH 已提交
785 786
    .. math::

C
refine  
chengduoZH 已提交
787
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
788

T
tensor-tang 已提交
789
    Where:
C
chengduoZH 已提交
790

L
liym27 已提交
791
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
792 793 794 795
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
796
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
797 798 799

    Example:

800 801
        - Input:

W
weixing02 已提交
802
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
803

W
weixing02 已提交
804
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
805

806
        - Output:
T
tensor-tang 已提交
807

W
weixing02 已提交
808
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
809

C
chengduoZH 已提交
810
        Where
811 812

        .. math::
C
chengduoZH 已提交
813

W
weixing02 已提交
814 815
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
816 817

    Args:
818
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
819
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
820
        num_filters(int): The number of filter. It is as same as the output
821
            image channel.
822 823
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
824 825
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
826 827
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
828 829
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
830
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
831 832
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
833 834
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
835
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
836 837 838
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
839
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
840 841
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
842
            Default: dilation = 1.
843 844 845 846
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
847 848 849 850 851
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
852
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
853 854 855 856 857
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
858 859
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
860 861
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
862 863
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
864
           None by default.
865
        data_format (str, optional): Specify the data format of the input, and the data format of the output
866
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
867 868
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
869 870

    Returns:
871 872 873
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
874
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
875

876 877 878 879 880
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
881
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
882 883 884 885 886 887 888
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
889 890 891
    Examples:
        .. code-block:: python

892 893
          import paddle
          paddle.enable_static()
894

895 896 897
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
898 899
    """

900 901 902
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
903
    if len(input.shape) != 4:
904 905 906 907
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
908
    num_channels = input.shape[1]
L
liym27 已提交
909
    if not isinstance(use_cudnn, bool):
910 911 912 913
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
914 915 916 917

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
918 919
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
920

921
    channel_last = data_format == "NHWC"
L
liym27 已提交
922 923 924 925
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
926 927
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
928
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
929

930 931 932
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
933 934
        raise ValueError(
            "the groups of input must be greater than 0, "
935 936
            "but received the groups of input is {}".format(groups)
        )
937 938 939 940 941
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
942 943
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
944 945
        num_filter_channels = num_channels // groups

946
    l_type = 'conv2d'
947 948 949 950 951
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
952
        l_type = 'depthwise_conv2d'
953

954 955 956 957 958
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
959 960
        l_type = 'depthwise_conv2d'

961 962
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
963
        if num_channels == groups and num_channels == num_filters:
964 965 966 967
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

968 969 970
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
971 972
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
973
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
974

L
liym27 已提交
975 976 977 978 979 980 981 982 983 984 985 986
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
987 988
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
989 990 991 992 993 994
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
995 996
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
997 998 999
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1000 1001 1002
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1013 1014 1015
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1016 1017
        if padding == "VALID":
            padding_algorithm = "VALID"
1018
            padding = [0, 0]
L
liym27 已提交
1019 1020
        elif padding == "SAME":
            padding_algorithm = "SAME"
1021
            padding = [0, 0]
L
liym27 已提交
1022 1023

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1024

M
minqiyang 已提交
1025
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1026 1027

    def _get_default_param_initializer():
C
chengduo 已提交
1028
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1029 1030 1031 1032
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1033 1034 1035
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1036 1037 1038 1039 1040 1041
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1042 1043
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1044

X
Xin Pan 已提交
1045
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1046

1047 1048 1049 1050 1051 1052
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1053 1054
        use_cudnn = False

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1074

1075 1076 1077 1078
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1079 1080 1081 1082

    return helper.append_activation(pre_act)


Y
yuyang18 已提交
1083
@templatedoc()
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
1095
    r"""
1096 1097
    :api_attr: Static Graph

1098 1099 1100 1101
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
1102 1103 1104

    The formula is as follows:

Y
yuyang18 已提交
1105
    ..  math::
G
guosheng 已提交
1106

1107
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
1108

1109
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
1110

1111
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
1112

1113 1114 1115 1116 1117
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
1118

G
guosheng 已提交
1119
    Args:
1120
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
1121 1122 1123 1124 1125
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
1126
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1127 1128 1129 1130
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1131 1132
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
1133
            a default :code:`ParamAttr` would be added as scale. The
1134 1135
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1136 1137
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
1138
            a default :code:`ParamAttr` would be added as bias. The
1139
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1140
        act(str, optional): Activation to be applied to the output of layer normalization.
1141 1142
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
1143 1144

    Returns:
1145
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
1146 1147 1148

    Examples:

1149 1150
        .. code-block:: python

1151 1152
            import paddle
            paddle.enable_static()
1153 1154 1155
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
1156
    """
1157 1158 1159
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
1160
    helper = LayerHelper('layer_norm', **locals())
1161 1162 1163
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
1164 1165 1166 1167 1168 1169 1170
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
1171 1172 1173 1174 1175 1176 1177 1178 1179
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
1180
        inputs['Scale'] = scale
1181 1182
    else:
        if param_attr:
T
tianshuo78520a 已提交
1183
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
1184
    if shift:
1185 1186 1187 1188 1189 1190
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
1191
        inputs['Bias'] = bias
1192 1193
    else:
        if bias_attr:
T
tianshuo78520a 已提交
1194
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
1195 1196

    # create output
1197 1198 1199 1200 1201 1202
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
1203
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
1215 1216 1217 1218

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
1219
@templatedoc()
1220
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
1221
    r"""
1222 1223
    :api_attr: Static Graph

D
dengkaipeng 已提交
1224 1225
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
1226
    This operation calculates the spectral normalization value of weight parameters of
1227
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
1228 1229
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
1230

D
dengkaipeng 已提交
1231 1232 1233
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
1234
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
1235 1236

    Step 2:
T
tianshuo78520a 已提交
1237
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
1238 1239
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
1240

1241
    .. math::
D
dengkaipeng 已提交
1242 1243 1244 1245 1246 1247

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
1248
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
1249 1250 1251 1252

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
1253

D
dengkaipeng 已提交
1254
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
1255

1256

D
dengkaipeng 已提交
1257 1258 1259
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
1260
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
1261 1262 1263
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
1264 1265 1266
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
1267 1268

    Returns:
C
Chen Long 已提交
1269
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
1270
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
1271 1272

    Examples:
K
Kaipeng Deng 已提交
1273
       .. code-block:: python
D
dengkaipeng 已提交
1274

1275
            import paddle
K
Kaipeng Deng 已提交
1276

1277
            paddle.enable_static()
C
Chen Long 已提交
1278
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
1279
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
1280
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
1281 1282
    """
    helper = LayerHelper('spectral_norm', **locals())
1283 1284 1285
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
1286 1287 1288
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
1289
    dtype = weight.dtype
D
dengkaipeng 已提交
1290 1291

    # create intput and parameters
1292
    input_shape = weight.shape
1293
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
1294 1295 1296 1297 1298
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
1299 1300 1301
    h = input_shape[dim]
    w = np.prod(input_shape) // h

1302 1303 1304 1305 1306 1307
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1308
    u.stop_gradient = True
1309 1310 1311 1312 1313 1314
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1315
    v.stop_gradient = True
D
dengkaipeng 已提交
1316

1317 1318 1319 1320 1321 1322 1323
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
1324
    # create output
1325
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
1339

1340
    return out
D
Dun 已提交
1341 1342


C
caoying03 已提交
1343
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1344
    """
1345

Y
yangyaming 已提交
1346
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1347 1348

    Args:
1349 1350 1351
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
1352 1353
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
1354 1355
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
1356
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
1357
            output Tensor. The result tensor will have one fewer dimension
1358 1359 1360 1361
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
1362 1363

    Returns:
1364 1365
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
1366

1367 1368
    Raises:
        TypeError, if out data type is different with the input data type.
1369

G
guosheng 已提交
1370 1371 1372
    Examples:
        .. code-block:: python

1373
            import paddle.fluid as fluid
1374 1375
            import paddle
            paddle.enable_static()
G
guosheng 已提交
1376 1377 1378
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
1379
            # Each example is followed by the corresponding output tensor.
1380
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
1381 1382 1383 1384
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
1385

1386
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
1387 1388
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
1389
            # Each example is followed by the corresponding output tensor.
1390
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
1391 1392
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
1393

G
guosheng 已提交
1394
    """
1395 1396
    reduce_all, dim = _get_reduce_dim(dim, input)

1397
    if in_dygraph_mode():
1398
        return _C_ops.sum(input, dim, None, keep_dim)
1399
    elif _in_legacy_dygraph():
1400 1401 1402
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
1403
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
1404
    check_variable_and_dtype(
1405 1406 1407 1408 1409
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
1410
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
1411
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1412 1413 1414 1415 1416 1417
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
1418
    return out
G
guosheng 已提交
1419 1420


Y
yuyang18 已提交
1421
@templatedoc()
1422
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
1423
    """
1424 1425
    :api_attr: Static Graph

Y
yuyang18 已提交
1426
    ${comment}
1427 1428

    Args:
Y
yuyang18 已提交
1429
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
1430 1431
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
1432 1433 1434 1435 1436
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
1437
        ${out_comment}.
1438 1439

    Examples:
B
Bai Yifan 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
1452 1453
    """
    helper = LayerHelper('row_conv', **locals())
1454
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
1455
    dtype = helper.input_dtype()
1456
    filter_shape = [future_context_size + 1, input.shape[-1]]
1457 1458 1459
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
1460
    out = helper.create_variable_for_type_inference(dtype)
1461 1462 1463 1464 1465
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
1466
    return helper.append_activation(out)
1467 1468


1469
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
1470
def one_hot(input, depth, allow_out_of_range=False):
1471
    """
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
1510
                        [0., 1., 0., 0.],
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
1523
            The second dimension in X is 5, which is greater than depth.
1524 1525
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
1526 1527

    Args:
1528 1529 1530
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
1531
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
1532
            is word id, depth is generally the dictionary size.
1533
        allow_out_of_range(bool): A bool value indicating whether the input
1534 1535 1536 1537
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
1538 1539

    Returns:
1540
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
1541 1542

    Examples:
C
caoying03 已提交
1543
        .. code-block:: python
1544

1545
            import paddle
1546
            import paddle.fluid as fluid
1547 1548
            paddle.enable_static()

1549 1550 1551
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
1552
    """
J
Jiabin Yang 已提交
1553
    if _non_static_mode():
S
songyouwei 已提交
1554 1555 1556
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
1557 1558
                1,
            ), "depth of type Variable should have shape [1]"
1559
            depth = depth.item(0)
1560 1561 1562
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
1563 1564
        out.stop_gradient = True
        return out
1565

1566
    helper = LayerHelper("one_hot", **locals())
1567
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
1568
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
1569
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
1570

1571 1572
    if not isinstance(depth, Variable):
        # user attribute
1573
        inputs = {'X': input}
Y
Yi Liu 已提交
1574
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
1575
    else:
1576 1577 1578
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
1579 1580 1581
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
1582
    one_hot_out.stop_gradient = True
1583
    return one_hot_out
Y
Yu Yang 已提交
1584 1585


Y
Yu Yang 已提交
1586
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
1587
    """
1588 1589
    :api_attr: Static Graph

1590 1591
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
1592
    and the step size is 1.
Y
Yu Yang 已提交
1593 1594

    Args:
Y
Yibing Liu 已提交
1595 1596 1597
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
1598

1599
    Returns:
Y
Yibing Liu 已提交
1600
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
1601 1602 1603 1604

    Examples:
        .. code-block:: python

1605
           import paddle.fluid as fluid
1606 1607
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
1608
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
1609
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
1610 1611
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
1612 1613
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
1614
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
1615 1616 1617 1618
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
1619 1620
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
1621
    if is_new_var:
1622 1623 1624
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
1625
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
1626 1627
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
1628
            outputs={'Out': [counter]},
1629 1630
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
1631 1632 1633
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
1634 1635


1636
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
1637
    """
1638
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
1639 1640
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
1641

M
minqiyang 已提交
1642
    For example:
H
haowang101779990 已提交
1643 1644 1645

    .. code-block:: text

M
minqiyang 已提交
1646
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
1647
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
1648

Y
Yibing Liu 已提交
1649
    Args:
1650
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
1651
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
1652
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
1653 1654

    Returns:
1655
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
1656 1657 1658 1659

    Examples:
        .. code-block:: python

1660 1661 1662
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
1663

Y
Yibing Liu 已提交
1664
    """
J
Jiabin Yang 已提交
1665
    if _non_static_mode():
L
Leo Chen 已提交
1666 1667 1668
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
1669
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
1670 1671 1672 1673 1674
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
1675
        if _in_legacy_dygraph():
1676
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
1677
            return out
1678
        return _C_ops.unsqueeze(input, axes)
1679 1680

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
1708
        if utils._contain_var(axes):
1709
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
1710 1711 1712
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
1713 1714
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
1715 1716 1717 1718 1719 1720
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
1721

1722 1723
    return out

1724

Y
yangyaming 已提交
1725
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
1726
    """
Y
Yibing Liu 已提交
1727
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
1728 1729 1730 1731
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
1732
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
1733 1734 1735 1736 1737 1738

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
1739
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
1740 1741 1742
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

1743
            target_lod: [4, 2]
Y
yangyaming 已提交
1744 1745

            then we get a 1-level LoDTensor:
1746
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
1747 1748 1749 1750 1751 1752
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
1753
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
1754 1755 1756 1757
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
1758
                y.data = [[2, 4]]
Y
yangyaming 已提交
1759 1760 1761
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
1762
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
1763 1764 1765 1766 1767 1768
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
1769
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
1770 1771 1772 1773
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
1774
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
1775 1776 1777 1778
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
1779
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
1780 1781 1782 1783
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
1784
        x (Variable): Input variable which could be a Tensor or LoDTensor.
1785
                      The data type should be int32, int64, float32 or float64.
1786 1787
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
1788 1789
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
1790
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
1791 1792

    Returns:
Y
Yibing Liu 已提交
1793
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
1794 1795

    Raises:
Y
Yibing Liu 已提交
1796
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
1797 1798 1799 1800

    Examples:
        .. code-block:: python

1801
            import paddle.fluid as fluid
1802 1803 1804
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
1805
    """
1806 1807 1808
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
1809
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
1810
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
1811
    if y is not None:
1812
        check_type(y, 'y', (Variable), 'lod_reset')
1813 1814 1815 1816
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
1817
    elif target_lod is not None:
1818 1819 1820 1821 1822 1823
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
1824
    else:
1825 1826 1827 1828
        raise ValueError("y and target_lod should not be both none.")
    return out


1829
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
1830
def relu(x, name=None):
W
wanghaoshuang 已提交
1831
    """
Z
zhupengyang 已提交
1832
    ${comment}
W
wanghaoshuang 已提交
1833 1834

    Args:
Z
zhupengyang 已提交
1835 1836 1837 1838
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
1839 1840

    Returns:
Z
zhupengyang 已提交
1841
        Variable: ${out_comment}
W
wanghaoshuang 已提交
1842 1843 1844 1845 1846

    Examples:

        .. code-block:: python

1847
            import paddle.fluid as fluid
Z
zhupengyang 已提交
1848 1849 1850 1851 1852 1853 1854
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
1855
                #  [1.  2.6]]"""
1856 1857

    if in_dygraph_mode():
W
wanghuancoder 已提交
1858
        return _C_ops.relu(x)
1859 1860
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
1861

1862 1863
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

1864
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
1865
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
1866
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
1867
    out = helper.create_variable_for_type_inference(dtype)
1868 1869 1870
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
1871
    return out
1872 1873


1874
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
1875
    if _non_static_mode():
1876
        op = getattr(_legacy_C_ops, op_name)
1877 1878 1879 1880
        if binary_op:
            return op(x, y)
        else:
            return op(x)
1881
    check_variable_and_dtype(
1882 1883
        x,
        "x",
1884
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1885 1886
        op_name,
    )
1887
    if y is not None:
1888
        check_variable_and_dtype(
1889 1890
            y,
            "y",
1891
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1892 1893
            op_name,
        )
1894
    if out is not None:
1895
        check_type(out, "out", Variable, op_name)
1896

M
minqiyang 已提交
1897 1898
    helper = LayerHelper(op_name, **locals())

1899 1900 1901
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
1902 1903
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
1904 1905

    if out is None:
1906
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
1907 1908

    if binary_op:
1909 1910 1911
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
1912 1913 1914 1915 1916 1917
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


1918 1919 1920
@templatedoc()
def clip(x, min, max, name=None):
    """
1921
        :old_api: paddle.fluid.layers.clip
1922

1923 1924 1925 1926
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
1927 1928
        min(float): ${min_comment}
        max(float): ${max_comment}
1929 1930
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
1931
                             For more information, please refer to :ref:`api_guide_Name`
1932 1933

    Returns:
S
SunGaofeng 已提交
1934 1935 1936 1937
        ${out_comment}

    Return Type:
        ${out_type}
1938 1939 1940 1941

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
1942
            import paddle.fluid as fluid
S
SunGaofeng 已提交
1943
            input = fluid.data(
1944 1945
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
1946 1947 1948
    """

    helper = LayerHelper("clip", **locals())
1949
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
1950 1951

    if name is None:
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
1978 1979 1980
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
1981 1982

    Returns:
1983
        Tensor:
W
wangguanzhong 已提交
1984

1985
        out(${out_type}): ${out_comment}
1986

W
wangguanzhong 已提交
1987

1988 1989 1990
    Examples:
        .. code-block:: python

1991
            import paddle
1992
            import paddle.fluid as fluid
1993

1994 1995 1996
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
1997 1998
    """

L
lyq 已提交
1999
    if in_dygraph_mode():
2000
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
2001
    if _non_static_mode():
2002
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
2003

2004
    helper = LayerHelper("clip_by_norm", **locals())
2005
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
2006
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
2007 2008

    if name is None:
2009 2010 2011
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
2012

2013 2014 2015
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
2016

2017 2018 2019 2020 2021 2022
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
2023 2024

    return out
X
Xin Pan 已提交
2025 2026


C
chengduo 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
2038 2039 2040 2041

    Examples:
        .. code-block:: python

2042
            import paddle.fluid as fluid
2043 2044 2045 2046 2047
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
2048
    """
2049 2050 2051
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

2052
    if _non_static_mode():
2053
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
2054 2055 2056

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2057 2058 2059 2060 2061 2062
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
2063 2064 2065
    return out


X
Xin Pan 已提交
2066 2067
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
2068 2069 2070 2071 2072 2073 2074 2075
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
2076 2077

    Args:
L
liu zhengxi 已提交
2078 2079
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
2080 2081 2082
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
2083 2084

    Returns:
L
liu zhengxi 已提交
2085
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
2086 2087

    Examples:
L
liu zhengxi 已提交
2088
        ..  code-block:: python
2089

2090
            import paddle.fluid as fluid
2091 2092
            import paddle
            paddle.enable_static()
2093 2094 2095 2096 2097
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
2098

2099

X
Xin Pan 已提交
2100
    """
J
Jiabin Yang 已提交
2101
    if _non_static_mode():
2102 2103 2104 2105 2106 2107 2108 2109
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
2110

2111 2112
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
2113
    helper = LayerHelper("mul", **locals())
2114 2115
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
2116
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
2117

2118 2119 2120
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
2121 2122 2123
    return out


C
chengduo 已提交
2124 2125 2126
@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
2127 2128 2129 2130 2131 2132 2133 2134 2135
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

2136
        Output is LoDTensor:
2137 2138 2139 2140 2141 2142
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
2143 2144

    Args:
2145 2146 2147
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
2148 2149

    Returns:
2150
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
2151 2152 2153

    Examples:
        .. code-block:: python
2154

B
bdzhuxiaoning 已提交
2155 2156 2157 2158
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
2159 2160
    """

2161 2162 2163 2164 2165
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
2166 2167
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2168 2169 2170 2171 2172 2173
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
2174
    return out