linalg.py 127.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _non_static_mode, in_dygraph_mode
18 19 20 21 22
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
Z
zhiboniu 已提交
23
from ..static import Variable
24 25
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
26 27 28
from .math import multiply, add
from .logic import logical_not
from .creation import full
29

A
andyjpaddle 已提交
30
import paddle
31
from paddle.common_ops_import import VarDesc
32
from paddle import _C_ops, _legacy_C_ops
33

34 35
__all__ = []

36 37 38
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
91
        return _C_ops.transpose(x, perm)
92 93
    else:
        if _in_legacy_dygraph():
94
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
95 96
            return out

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
112 113 114 115 116 117 118 119
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
120 121
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
122 123 124 125 126
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
127 128
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
129 130 131 132

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
133 134 135 136 137 138
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
139 140 141
    return out


S
ShenLiang 已提交
142
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
143
    """
144 145
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
146
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
147

S
ShenLiang 已提交
148 149
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
150 151 152 153 154

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
155 156
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
157 158 159 160 161 162 163 164
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

165 166
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
167
      After the matrix multiply, the prepended dimension is removed.
168 169

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
170 171
      the matrix-vector product is obtained.

172 173 174 175 176 177 178 179 180
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
181
      out will be a (j, k, n, p) tensor.
182 183

    Args:
S
ShenLiang 已提交
184 185
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
186 187 188
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
189 190 191
            will be named automatically.

    Returns:
S
ShenLiang 已提交
192
        Tensor: The output Tensor.
193 194 195

    Examples:

C
Chen Long 已提交
196 197 198 199 200 201 202 203 204
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
205
            # (1,)
C
Chen Long 已提交
206 207 208 209 210 211

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
212
            # (10,)
C
Chen Long 已提交
213 214 215 216 217 218

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
219
            # (10, 5)
C
Chen Long 已提交
220 221 222 223 224 225

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
226
            # (10, 5, 5)
C
Chen Long 已提交
227 228 229 230 231 232

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
233
            # (10, 3, 5, 5)
234 235

    """
236
    if in_dygraph_mode():
237
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
238 239 240

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
241
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
242 243
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

244
    attrs = {
S
ShenLiang 已提交
245 246
        'trans_x': transpose_x,
        'trans_y': transpose_y,
247 248 249 250 251
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
252
            check_variable_and_dtype(
253 254
                val,
                name,
255
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
256 257
                'matmul',
            )
258 259 260

    __check_input(x, y)

S
ShenLiang 已提交
261
    helper = LayerHelper('matmul_v2', **locals())
262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
263 264 265 266 267 268
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
269
    return out
Z
Zhang Ting 已提交
270 271


myq406450149's avatar
myq406450149 已提交
272
def norm(x, p='fro', axis=None, keepdim=False, name=None):
273
    """
S
swtkiwi 已提交
274

275 276 277
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

278
    Note:
279 280 281 282 283
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

284
    Args:
myq406450149's avatar
myq406450149 已提交
285
        x (Tensor): The input tensor could be N-D tensor, and the input data
286
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
287
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
288
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
289
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
290 291
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
292
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
293
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
294
            Default value is `None`.
295 296 297 298 299 300 301 302
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
303
        Tensor: results of norm operation on the specified axis of input tensor,
304
        it's data type is the same as input's Tensor.
305

306 307
    Examples:
        .. code-block:: python
308

309
            import paddle
310 311 312 313 314 315 316 317 318
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
319

320
            # compute frobenius norm along last two dimensions.
321
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
322 323
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
324

325
            # compute 2-order vector norm along last dimension.
326
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
327 328 329
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute 2-order  norm along [0,1] dimension.
332
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
333 334
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
335 336

            # compute inf-order  norm
337 338 339 340 341 342 343 344 345
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
346 347

            # compute -inf-order  norm
348 349 350 351 352 353 354 355 356
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
357 358
    """

myq406450149's avatar
myq406450149 已提交
359
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
360 361 362 363 364 365 366 367 368 369 370
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
371 372 373

        if in_dygraph_mode():
            if dim is None:
374 375
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
376
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
377
            if dim is None:
378 379 380 381 382 383
                return _legacy_C_ops.frobenius_norm(
                    input, 'keep_dim', keepdim, 'reduce_all', True
                )
            return _legacy_C_ops.frobenius_norm(
                input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False
            )
myq406450149's avatar
myq406450149 已提交
384 385
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
386
            attrs['reduce_all'] = True
387 388 389
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'frobenius_norm'
        )
390 391

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
392
        out = helper.create_variable_for_type_inference(
393 394
            dtype=helper.input_dtype()
        )
395

396 397 398 399 400 401
        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
402 403
        return out

404 405 406
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
407 408 409 410 411 412 413 414
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
415
        if in_dygraph_mode():
416 417
            if axis is None:
                axis = -1
418
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
419 420

        if _in_legacy_dygraph():
421 422 423 424 425 426 427 428 429 430 431 432 433
            if axis is None:
                axis = -1
            return _legacy_C_ops.p_norm(
                input,
                'porder',
                porder,
                'axis',
                axis,
                'keepdim',
                keepdim,
                'asvector',
                asvector,
            )
434

435 436 437 438
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
439 440 441
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'p_norm'
        )
myq406450149's avatar
myq406450149 已提交
442

443 444 445 446
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
447
            'asvector': asvector,
448 449 450
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
451
        out = helper.create_variable_for_type_inference(
452 453
            dtype=helper.input_dtype()
        )
454

455 456 457 458 459 460
        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
461 462
        return out

463 464 465
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
466
        if in_dygraph_mode():
467
            out = _C_ops.abs(input)
468
            reduce_all = (
469
                True if axis is None or axis == [] or asvector else False
470
            )
471
            axis = axis if axis is not None and axis != [] else [0]
472 473 474
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
475
                return _C_ops.max(out, axis, keepdim)
476
            else:
477
                return _C_ops.min(out, axis, keepdim)
478

O
OccupyMars2025 已提交
479
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
480
        out = helper.create_variable_for_type_inference(
481 482
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
483 484
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
485 486
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
487

488 489
        reduce_all = True if axis is None or axis == [] or asvector else False
        axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
490

491 492 493 494 495 496 497 498 499
        reduce_type = (
            'reduce_max' if porder == np.float64('inf') else 'reduce_min'
        )
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
myq406450149's avatar
myq406450149 已提交
500 501 502

        return reduce_out

503
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
504 505 506 507
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
508
        if in_dygraph_mode():
509 510 511
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
512
            out = _C_ops.pow(sum_out, float(1.0 / porder))
513 514
            return out

myq406450149's avatar
myq406450149 已提交
515 516
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
517 518
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
519
        abs_out = block.create_variable_for_type_inference(
520 521 522 523 524
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
525
        pow_out = block.create_variable_for_type_inference(
526 527
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
528

529 530 531 532 533 534
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
535
        sum_out = block.create_variable_for_type_inference(
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
554 555
        return out

556 557 558
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
559
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
560 561
            else:
                raise ValueError(
562 563
                    "only valid string values are 'fro', found {}".format(p)
                )
564
        elif isinstance(p, (int, float)):
565 566 567 568 569 570 571 572
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
573
        else:
574
            raise ValueError(
575 576
                "only valid p type is string or float, found {}".format(type(p))
            )
577

myq406450149's avatar
myq406450149 已提交
578 579
    if isinstance(axis, tuple):
        axis = list(axis)
580 581 582
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

583
    # calculate vector norm, where axis is int or list with only one integer
584
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
585 586
        if isinstance(p, str):
            if p == "fro":
587 588 589 590 591 592 593 594
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
595 596 597

            else:
                raise ValueError(
598 599
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
600
        elif isinstance(p, (int, float)):
601 602 603 604 605 606 607 608
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
609 610
        else:
            raise ValueError(
611 612 613 614 615
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
616 617
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
618 619 620
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
621 622
        elif p == 0:
            raise ValueError(
623 624 625 626
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
627
        else:
628 629 630
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
631 632
    else:
        raise ValueError(
633 634 635 636
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
637 638


639
def dist(x, y, p=2, name=None):
640
    r"""
S
swtkiwi 已提交
641

642
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
643
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
644
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
669 670 671 672 673 674 675

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
676
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
677 678 679 680 681

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
682
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
683 684 685 686 687 688 689 690 691 692 693 694

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
695 696
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
697
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
698 699
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
700 701

    Returns:
702
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
703 704 705 706 707 708

    Examples:
        .. code-block:: python

            import paddle

709 710
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
711 712
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
713

714 715
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
716

717 718
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
719

720 721
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
722
    """
H
hong 已提交
723
    if in_dygraph_mode():
724
        return _C_ops.dist(x, y, p)
H
hong 已提交
725

Z
Zhang Ting 已提交
726 727 728 729 730 731 732 733 734
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
735 736 737
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
738
    return out
L
liuwei1031 已提交
739 740


741 742 743 744 745 746
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
747 748
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
767 768
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
769 770 771

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
772 773
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
774 775 776

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
777 778
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
779 780 781

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
782 783
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
784 785 786

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
787 788
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
789 790 791

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
792 793
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
794 795 796

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
797 798
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
799 800

            # compute conditional number when order of the norm is inf
801 802 803
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
804 805

            # compute conditional number when order of the norm is -inf
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

822
            a_cond_fro = paddle.linalg.cond(a, p='fro')
823 824 825 826 827 828 829 830 831 832 833 834
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
835
            b_cond_2 = paddle.linalg.cond(b, p=2)
836 837
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
838 839 840

    """

841
    def mat_norm(input, porder=1.0, axis=None):
842 843 844 845 846 847
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
848
        axis = axis if axis is not None and axis != [] else [0]
849 850
        keepdim = False

851 852 853 854 855 856 857 858 859 860 861
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
862 863 864 865 866 867 868 869 870
            sum_out = _legacy_C_ops.reduce_sum(
                abs_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
871
            if porder == 1 or porder == np.inf:
872 873 874 875 876 877 878 879 880
                return _legacy_C_ops.reduce_max(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
881
            if porder == -1 or porder == -np.inf:
882 883 884 885 886 887 888 889 890
                return _legacy_C_ops.reduce_min(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
891 892 893
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
894 895
                dtype=block.input_dtype()
            )
896
            sum_out = block.create_variable_for_type_inference(
897 898
                dtype=block.input_dtype()
            )
899
            out = block.create_variable_for_type_inference(
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
915
            if porder == 1 or porder == np.inf:
916 917 918 919 920 921 922 923 924 925
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
926
            if porder == -1 or porder == -np.inf:
927 928 929 930 931 932 933 934 935 936
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
937
            return out
938 939 940 941 942 943 944 945 946

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

947
        if in_dygraph_mode():
948
            pow_out = _C_ops.pow(input, porder)
949 950
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
951
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
952
        elif paddle.in_dynamic_mode():
953
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
            sum_out_1 = _legacy_C_ops.reduce_sum(
                pow_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            sum_out_2 = _legacy_C_ops.reduce_sum(
                sum_out_1,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1.0 / porder))
973 974 975

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
976 977
            dtype=block.input_dtype()
        )
978
        sum_out_1 = block.create_variable_for_type_inference(
979 980
            dtype=block.input_dtype()
        )
981
        sum_out_2 = block.create_variable_for_type_inference(
982 983
            dtype=block.input_dtype()
        )
984
        out = block.create_variable_for_type_inference(
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            dtype=block.input_dtype()
        )
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

1024
        if _non_static_mode():
1025
            if porder == "nuc":
1026
                if in_dygraph_mode():
1027
                    return _C_ops.sum(s, axis, None, keepdim)
1028
                else:
1029 1030 1031 1032 1033 1034 1035 1036 1037
                    return _legacy_C_ops.reduce_sum(
                        s,
                        'dim',
                        axis,
                        'keepdim',
                        keepdim,
                        'reduce_all',
                        reduce_all,
                    )
1038 1039 1040 1041
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
1042
                    return _C_ops.divide(max_out, min_out)
1043
                if porder == -2:
1044
                    return _C_ops.divide(min_out, max_out)
1045 1046

            else:
1047 1048 1049 1050 1051 1052
                max_out = _legacy_C_ops.reduce_max(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
                min_out = _legacy_C_ops.reduce_min(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
1053 1054
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
1055 1056
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False
                    )
1057 1058
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
1059 1060
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False
                    )
1061 1062 1063

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
1064 1065
            dtype=block.input_dtype()
        )
1066
        if porder == "nuc":
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
1077 1078
            return out
        max_out = block.create_variable_for_type_inference(
1079 1080
            dtype=block.input_dtype()
        )
1081
        min_out = block.create_variable_for_type_inference(
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
1096
        if porder == 2:
1097 1098 1099 1100 1101 1102
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out, 'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1103 1104
            return out
        if porder == -2:
1105 1106 1107 1108 1109 1110
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out, 'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1111 1112 1113
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1114
        if paddle.in_dynamic_mode():
1115 1116 1117 1118 1119
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1120
        raise ValueError(
1121 1122 1123
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1124
    if p is None:
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1137
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1138 1139
                    x_inv, porder=p, axis=[-2]
                )
1140
            if p in (np.inf, -np.inf):
1141
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1142 1143
                    x_inv, porder=p, axis=[-1]
                )
1144
        else:
1145 1146 1147 1148
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1149 1150 1151 1152 1153 1154
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1155 1156 1157
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1158 1159


L
liuwei1031 已提交
1160 1161 1162
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1163

1164
    Note:
1165 1166
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1167 1168

    Parameters:
S
ShenLiang 已提交
1169 1170
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1171 1172
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1173
    Returns:
1174
        Tensor: the calculated result Tensor.
1175

L
liuwei1031 已提交
1176 1177 1178 1179 1180
    Examples:

    .. code-block:: python

        import paddle
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1191
        z = paddle.dot(x, y)
1192
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1193 1194

    """
1195 1196
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1197 1198
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1199

L
liuwei1031 已提交
1200
    op_type = 'dot'
1201

L
liuwei1031 已提交
1202 1203 1204
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

1205 1206 1207 1208 1209 1210
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
    )
    check_variable_and_dtype(
        y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
    )
L
liuwei1031 已提交
1211 1212 1213 1214 1215

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1216 1217 1218 1219 1220 1221
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
    helper.append_op(
        type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
    )
L
liuwei1031 已提交
1222
    return out
1223 1224


Z
zhiboniu 已提交
1225 1226 1227 1228 1229
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1230
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1264 1265
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1279 1280
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1281 1282 1283
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1284 1285 1286 1287
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1288 1289 1290
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1291 1292
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1293 1294 1295 1296 1297 1298 1299 1300
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1301 1302 1303 1304 1305
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1306 1307 1308
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1309 1310 1311 1312
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1313 1314 1315
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1316 1317
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1336
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1348 1349
def t(input, name=None):
    """
1350 1351
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1352
    the paddle.transpose function which perm dimensions set 0 and 1.
1353

1354
    Args:
1355
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1356
        name(str, optional): The default value is None.  Normally there is no need for
1357 1358
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1359
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1360

1361
    Examples:
1362

1363 1364 1365
        .. code-block:: python
           :name: code-example
             import paddle
1366

1367
             # Example 1 (0-D tensor)
1368 1369
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1370

1371
             # Example 2 (1-D tensor)
1372 1373 1374
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1375 1376

             # Example 3 (2-D tensor)
1377 1378 1379 1380 1381 1382 1383 1384
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1385

1386 1387 1388 1389 1390
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1391 1392
            "tensor.transpose() instead." % len(input.shape)
        )
1393 1394 1395 1396 1397
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1398
        out = _C_ops.transpose(input, perm)
1399 1400 1401
        return out

    if _in_legacy_dygraph():
1402 1403 1404 1405
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1406
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1407 1408 1409
        return out

    check_variable_and_dtype(
1410 1411 1412 1413 1414
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose',
    )
1415 1416 1417 1418 1419 1420 1421

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1422 1423 1424 1425 1426 1427
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': [1, 0]},
        )
1428
    return out
1429 1430


W
wanghuancoder 已提交
1431
def cross(x, y, axis=9, name=None):
1432
    """
1433
    Computes the cross product between two tensors along an axis.
1434

1435 1436
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1437

1438
    Args:
1439 1440
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1441
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1442
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1443 1444

    Returns:
1445
        Tensor. A Tensor with same data type as `x`.
1446

1447 1448
    Examples:
        .. code-block:: python
1449

1450
            import paddle
1451

Z
Zhou Wei 已提交
1452 1453 1454 1455 1456 1457
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1468
    """
J
Jiabin Yang 已提交
1469
    if in_dygraph_mode():
1470
        axis = K_DEFAULT_DIM if axis is None else axis
1471
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1472 1473 1474
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1475
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1476
            else:
1477
                return _legacy_C_ops.cross(x, y)
1478
        else:
J
Jiabin Yang 已提交
1479 1480 1481 1482 1483
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1484 1485 1486 1487 1488 1489
            helper.append_op(
                type='cross',
                inputs={'X': x, 'Y': y},
                outputs={'Out': out},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1490
            return out
1491 1492


1493
def cholesky(x, upper=False, name=None):
1494
    r"""
G
Guo Sheng 已提交
1495
    Computes the Cholesky decomposition of one symmetric positive-definite
1496 1497
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1498 1499 1500 1501 1502 1503
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1504
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1505 1506 1507 1508 1509
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1510 1511
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1512 1513

    Returns:
1514 1515
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1516

G
Guo Sheng 已提交
1517 1518 1519 1520 1521
    Examples:
        .. code-block:: python

            import paddle

1522 1523 1524 1525
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1526
            out = paddle.linalg.cholesky(x, upper=False)
1527
            print(out)
G
Guo Sheng 已提交
1528
    """
H
hong 已提交
1529
    if in_dygraph_mode():
1530
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1531 1532

    if _in_legacy_dygraph():
1533
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1534

G
Guo Sheng 已提交
1535 1536 1537 1538
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1539 1540 1541 1542 1543 1544
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
G
Guo Sheng 已提交
1545 1546 1547
    return out


1548 1549 1550 1551
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1552
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1553
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1554 1555

    Args:
1556 1557 1558 1559
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1560
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1561 1562
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1563
            the lower triangular of the matrix to compute.
1564 1565 1566 1567
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1585

1586
    """
1587 1588 1589 1590 1591 1592 1593
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1594 1595 1596
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1597

1598 1599 1600 1601 1602 1603
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1604
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1605 1606

    if _in_legacy_dygraph():
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
        return _legacy_C_ops.matrix_rank(
            x,
            tol_tensor,
            "tol",
            tol_attr,
            'hermitian',
            hermitian,
            'use_default_tol',
            use_default_tol,
        )
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1654 1655 1656
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1657 1658 1659
    return out


1660 1661 1662 1663 1664 1665 1666 1667 1668
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1669 1670
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1671 1672 1673 1674
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1675
        Tensor: The product Tensor.
1676 1677

    Examples:
S
sunzhongkai588 已提交
1678 1679 1680
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1681

S
sunzhongkai588 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1691 1692 1693 1694 1695 1696
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1697

1698
    """
Y
yaoxuefeng 已提交
1699 1700 1701 1702
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1703 1704 1705 1706
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1707 1708
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1709 1710 1711 1712
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1713 1714
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1715 1716 1717 1718
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1719

1720
    if in_dygraph_mode():
1721
        return _C_ops.bmm(x, y)
1722

Z
zhiboniu 已提交
1723
    if paddle.in_dynamic_mode():
1724
        return _legacy_C_ops.bmm(x, y)
1725 1726

    helper = LayerHelper('bmm', **locals())
1727 1728 1729
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1730 1731


1732
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1733
    """
1734
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1735 1736 1737
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1738
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1739
            should be float32, float64, int32, int64.
1740 1741 1742 1743
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1744 1745

    Returns:
1746
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1747

1748
    Examples:
Q
Qi Li 已提交
1749
        .. code-block:: python
1750

Q
Qi Li 已提交
1751
            import paddle
1752

1753
            inputs = paddle.to_tensor([1, 2, 1])
1754 1755
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1756
    """
H
hong 已提交
1757
    if in_dygraph_mode():
1758
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1759 1760

    if _in_legacy_dygraph():
1761 1762 1763
        return _legacy_C_ops.histogram(
            input, "bins", bins, "min", min, "max", max
        )
Q
Qi Li 已提交
1764 1765

    helper = LayerHelper('histogram', **locals())
1766 1767 1768
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
    )
Q
Qi Li 已提交
1769
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1770 1771 1772 1773 1774 1775
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins, 'min': min, 'max': max},
    )
Q
Qi Li 已提交
1776
    return out
S
smallv0221 已提交
1777 1778 1779 1780


def bincount(x, weights=None, minlength=0, name=None):
    """
1781
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1809 1810 1811
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1812
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1813 1814 1815 1816 1817 1818

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
1819 1820 1821 1822 1823 1824
        check_variable_and_dtype(
            weights,
            'Weights',
            ['int32', 'int64', 'float32', 'float64'],
            'bincount',
        )
S
smallv0221 已提交
1825 1826 1827
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1828 1829 1830 1831 1832 1833
    helper.append_op(
        type='bincount',
        inputs={'X': x, 'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength},
    )
S
smallv0221 已提交
1834
    return out
1835 1836 1837 1838 1839 1840 1841


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1842
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1843
            should be one of float32, float64.
F
furnace 已提交
1844
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1860 1861
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1862
            out = paddle.mv(x, vec)
1863 1864 1865
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1866
    """
J
Jiabin Yang 已提交
1867
    if in_dygraph_mode():
1868
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1869 1870
    else:
        if _in_legacy_dygraph():
1871
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1872 1873
            return out
        else:
1874

J
Jiabin Yang 已提交
1875 1876 1877
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
1878 1879 1880
                    check_variable_and_dtype(
                        val, name, ['float32', 'float64'], 'mv'
                    )
J
Jiabin Yang 已提交
1881 1882 1883 1884
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1885 1886 1887 1888
                        "x should be 2-dimensional. But received x's dimention: {}".format(
                            x_shape
                        )
                    )
J
Jiabin Yang 已提交
1889 1890
                if len(vec_shape) != 1:
                    raise ValueError(
1891 1892 1893 1894
                        "vec should be 1-dimensional. But received vec's dimention: {}".format(
                            vec_shape
                        )
                    )
J
Jiabin Yang 已提交
1895 1896 1897 1898 1899

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1900 1901 1902
            helper.append_op(
                type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
            )
J
Jiabin Yang 已提交
1903
            return out
1904 1905


1906
def det(x, name=None):
H
huangxu96 已提交
1907 1908
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1909

H
huangxu96 已提交
1910
    Args:
1911 1912 1913 1914
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1915
    Returns:
1916
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1917

1918
    Examples:
H
huangxu96 已提交
1919 1920
        .. code-block:: python

1921
            import paddle
H
huangxu96 已提交
1922

1923
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1924

1925
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1926

1927
            print(A)
1928

1929
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1930

1931

H
huangxu96 已提交
1932
    """
C
chentianyu03 已提交
1933
    if in_dygraph_mode():
1934
        return _C_ops.det(x)
C
chentianyu03 已提交
1935 1936

    if _in_legacy_dygraph():
1937
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1938 1939 1940 1941

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
1942 1943 1944 1945
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1946

1947 1948 1949 1950 1951 1952
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1953 1954 1955
    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1956 1957 1958
    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1959 1960 1961
    return out


1962
def slogdet(x, name=None):
H
huangxu96 已提交
1963 1964 1965
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1966

H
huangxu96 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1978
    Examples:
1979
        .. code-block:: python
H
huangxu96 已提交
1980

1981
            import paddle
H
huangxu96 已提交
1982

1983
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1984

1985
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1986

1987
            print(A)
1988

1989 1990
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1991 1992

    """
1993
    if in_dygraph_mode():
1994
        return _C_ops.slogdet(x)
1995 1996

    elif paddle.in_dynamic_mode():
1997
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1998 1999 2000 2001

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
2002 2003 2004 2005
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
2006

2007 2008 2009 2010 2011 2012
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
2013 2014 2015
    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2016 2017 2018
    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
2019 2020 2021
    return out


2022 2023
def svd(x, full_matrices=False, name=None):
    r"""
2024 2025 2026 2027 2028
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
2029 2030
        X = U * diag(S) * VT

2031 2032
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
2033
            where `...` is zero or more batch dimensions. N and M can be arbitraty
2034 2035 2036 2037
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
2038
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
2039
            If full_matrices = False, svd op will use a economic method to store U and V.
2040
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
2041
        name (str, optional): Name for the operation (optional, default is None).
2042
            For more information, please refer to :ref:`api_guide_Name`.
2043 2044

    Returns:
2045
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2046

2047 2048 2049 2050
    Examples:
        .. code-block:: python

            import paddle
2051 2052 2053

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
2054
            u, s, vh = paddle.linalg.svd(x)
2055 2056 2057 2058 2059
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

2060
            print (s)
2061
            #S = [8.14753743, 0.78589688]
2062
            print (vh)
2063 2064
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
2065

2066
            # one can verify : U * S * VT == X
2067
            #                  U * UH == I
2068
            #                  V * VH == I
2069
    """
2070
    if in_dygraph_mode():
2071
        return _C_ops.svd(x, full_matrices)
2072
    if _in_legacy_dygraph():
2073
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
2085
        outputs={'U': u, 'VH': vh, 'S': s},
2086 2087
        attrs=attrs,
    )
2088 2089 2090
    return u, s, vh


2091 2092 2093
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
2094

2095 2096 2097 2098 2099
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2100

2101 2102
    Specifically,

2103
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
2104

2105 2106
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

2107
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
2108 2109 2110 2111 2112 2113

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2114
        name (str, optional): Name for the operation (optional, default is None).
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2129
            print(paddle.linalg.matrix_power(x, 2))
2130 2131 2132 2133
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2134
            print(paddle.linalg.matrix_power(x, 0))
2135 2136 2137 2138
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2139
            print(paddle.linalg.matrix_power(x, -2))
2140 2141 2142 2143
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2144
    if in_dygraph_mode():
2145
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2146 2147

    if _in_legacy_dygraph():
2148
        return _legacy_C_ops.matrix_power(x, "n", n)
2149 2150 2151 2152 2153

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2154 2155 2156 2157 2158 2159
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n},
    )
2160
    return out
2161 2162


2163 2164 2165 2166 2167 2168 2169
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2170 2171
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2172
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2173
            If mode = "reduced", qr op will return reduced Q and R matrices,
2174
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2175
            If mode = "complete", qr op will return complete Q and R matrices,
2176 2177 2178 2179 2180
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2181

2182
    Returns:
2183
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2184
        If mode = "r", qr will return a tensor which represents R.
2185 2186

    Examples:
2187 2188
        .. code-block:: python

2189
            import paddle
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2202 2203

            # one can verify : X = Q * R ;
2204
    """
Y
Yulong Ao 已提交
2205
    if in_dygraph_mode():
2206
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2207 2208 2209 2210 2211
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2212
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2224 2225 2226
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
    )
2227 2228 2229 2230 2231 2232
    if mode == "r":
        return r
    else:
        return q, r


2233 2234
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2235
    Computes the LU factorization of an N-D(N>=2) matrix x.
2236

2237
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2238 2239 2240 2241
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2242 2243 2244 2245 2246 2247

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2259

2260
    Returns:
2261
        factorization (Tensor), LU matrix, the factorization of input X.
2262

2263 2264 2265
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2266

2267 2268 2269
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2270

2271 2272

    Examples:
2273 2274
        .. code-block:: python

2275
            import paddle
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2291

2292 2293 2294 2295 2296 2297
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2298
            # [1., 0., 0.]]),
2299 2300 2301 2302
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2303
            # [0.60000000, 0.50000000]]),
2304 2305 2306 2307 2308
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2309 2310

            # one can verify : X = P @ L @ U ;
2311
    """
L
Lin Manhui 已提交
2312 2313

    if in_dygraph_mode():
2314
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2315
    elif paddle.in_dynamic_mode():
2316
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2317 2318 2319 2320 2321 2322 2323 2324
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2325 2326 2327 2328 2329 2330
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2331 2332 2333 2334 2335 2336 2337 2338
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2339
    Unpack L U and P to single matrix tensor .
2340 2341 2342
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2343 2344 2345 2346 2347

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2361

2362
    Returns:
2363
        P (Tensor), Permutation matrix P of lu factorization.
2364

2365
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2366

2367
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2368

2369 2370

    Examples:
2371 2372
        .. code-block:: python

2373
            import paddle
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2389

2390 2391 2392 2393 2394 2395
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2396
            # [1., 0., 0.]]),
2397 2398 2399 2400
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2401
            # [0.60000000, 0.50000000]]),
2402 2403 2404 2405 2406
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2407
            # one can verify : X = P @ L @ U ;
2408 2409
    """

2410
    if in_dygraph_mode():
2411
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2412 2413
        return P, L, U

Z
zhiboniu 已提交
2414
    if paddle.in_dynamic_mode():
2415 2416 2417
        P, L, U = _legacy_C_ops.lu_unpack(
            x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots
        )
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2429 2430 2431 2432 2433 2434
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x, 'Pivots': y},
        outputs={'Pmat': p, 'L': l, 'U': u},
        attrs=attrs,
    )
2435 2436 2437
    return p, l, u


L
Lijunhui 已提交
2438 2439
def eig(x, name=None):
    """
2440
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2441

2442 2443 2444 2445 2446 2447
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2448 2449 2450 2451

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2452
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2466
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2467
                               [9.956216,  8.749598,  6.066444 ],
2468
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2469
            w, v = paddle.linalg.eig(x)
2470
            print(v)
L
Lijunhui 已提交
2471 2472 2473 2474 2475 2476 2477 2478
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2479
            print(w)
L
Lijunhui 已提交
2480 2481 2482 2483
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2484
    if in_dygraph_mode():
2485
        return _C_ops.eig(x)
2486
    elif paddle.in_dynamic_mode():
2487
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2488 2489
        return w, v

2490 2491 2492
    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
    )
L
Lijunhui 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2505 2506 2507
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2508 2509 2510

    Warning:
        The gradient kernel of this operator does not yet developed.
2511 2512 2513 2514
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2515
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2516
            Its data type should be float32, float64, complex64, or complex128.
2517
        name (str, optional): Name for the operation (optional, default is None).
2518
            For more information, please refer to :ref:`api_guide_Name`.
2519

2520
    Returns:
2521 2522
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2523 2524 2525 2526 2527

    Examples:
        .. code-block:: python

            import paddle
2528

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

2541 2542 2543
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2544 2545 2546 2547

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2548 2549 2550 2551
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2552 2553 2554

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2555 2556 2557 2558
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2559

R
Ruibiao Chen 已提交
2560
    if in_dygraph_mode():
2561
        return _C_ops.eigvals(x)
2562 2563
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2564 2565 2566 2567 2568 2569 2570

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2571 2572 2573 2574
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2575
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2612 2613
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2614
        out = paddle.linalg.multi_dot([A, B])
2615
        print(out.shape)
2616 2617 2618
        # [3, 5]

        # A * B * C
2619 2620 2621
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2622
        out = paddle.linalg.multi_dot([A, B, C])
2623
        print(out.shape)
2624 2625 2626
        # [10, 7]

    """
2627
    if _in_legacy_dygraph():
2628
        return _legacy_C_ops.multi_dot(x)
2629
    if in_dygraph_mode():
2630
        return _C_ops.multi_dot(x)
2631 2632 2633

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
2634 2635 2636 2637 2638 2639
        check_variable_and_dtype(
            item,
            'x[' + str(id) + ']',
            ['float16', 'float32', 'float64'],
            'multi_dot',
        )
2640 2641
        if item.dtype != x[0].dtype:
            raise TypeError(
2642 2643
                "All the Tensors in the input must have the same data type."
            )
2644 2645 2646 2647 2648 2649

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2650 2651 2652 2653


def eigh(x, UPLO='L', name=None):
    """
2654
    Compute the eigenvalues and eigenvectors of a
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2666 2667 2668 2669
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2670 2671 2672 2673 2674 2675

    Examples:
        .. code-block:: python

            import paddle

2676
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2677
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2678 2679 2680 2681 2682 2683 2684
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2685
    if in_dygraph_mode():
2686
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2687 2688

    if _in_legacy_dygraph():
2689
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2690 2691 2692 2693 2694 2695

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
2696 2697
                "length of Input(input) is %s." % len(x.shape)
            )
2698 2699
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2700 2701 2702 2703
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
2704
        if UPLO != 'L' and UPLO != 'U':
2705
            raise ValueError(
2706 2707
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
2708 2709 2710 2711

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2712 2713 2714
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh'
    )
2715 2716 2717 2718

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2719 2720 2721 2722 2723 2724
    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO},
    )
2725
    return out_value, out_vector
A
andyjpaddle 已提交
2726 2727 2728 2729


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2730
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2741

A
andyjpaddle 已提交
2742 2743 2744
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2745 2746 2747
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2748 2749 2750 2751
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2752
        rcond(Tensor, optional): the tolerance value to determine
2753
            when is a singular value zero. Default:1e-15.
2754 2755

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2756
            if complex or symmetric if real. Default: False.
2757 2758

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2759
            the layer will be named automatically.
2760

A
andyjpaddle 已提交
2761
    Returns:
2762
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2763
        pseudo inverse of x. Its shape should be (*, n, m).
2764

A
andyjpaddle 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2791 2792 2793
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2794 2795
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2796 2797 2798 2799
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2800

2801 2802 2803 2804 2805 2806
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2807
            st = _C_ops.unsqueeze(singular, [-2])
2808 2809 2810

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2811
            v = _C_ops.transpose(vt, perm)
2812 2813

            out_1 = v * st
2814
            out_2 = _C_ops.matmul(out_1, u, False, True)
2815 2816 2817
            return out_2
        else:
            # combine eigh and matmul op
2818
            s, u = _C_ops.eigh(x, 'UPLO')
2819
            s_abs = paddle.abs(s)
2820
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2832
            st = _C_ops.unsqueeze(singular, [-2])
2833 2834

            out_1 = u * st
2835 2836
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2837 2838 2839
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2840 2841
        if not hermitian:
            # combine svd and matmul op
2842
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
2843 2844 2845
            max_singular_val = _legacy_C_ops.reduce_max(
                s, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2846 2847 2848 2849 2850 2851
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2852 2853 2854 2855 2856
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2857
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2858 2859 2860

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2861
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2862 2863

            out_1 = v * st
2864
            if in_dygraph_mode():
2865
                out_2 = _C_ops.matmul(out_1, u, False, True)
2866
            else:
2867 2868 2869
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2870 2871 2872
            return out_2
        else:
            # combine eigh and matmul op
2873
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2874
            s_abs = paddle.abs(s)
2875 2876 2877
            max_singular_val = _legacy_C_ops.reduce_max(
                s_abs, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2878 2879 2880 2881 2882 2883
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2884 2885 2886 2887 2888
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2889
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2890 2891

            out_1 = u * st
2892
            u_conj = _legacy_C_ops.conj(u)
2893
            if in_dygraph_mode():
2894
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2895
            else:
2896 2897 2898
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u_conj, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2912
                outputs={'U': u, 'VH': vt, 'S': s},
2913 2914
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2915 2916

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2917 2918 2919 2920 2921 2922
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2923

2924
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2925 2926
            cutoff = rcond * max_singular_val
            y = float('inf')
2927
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2928 2929

            condition = s > cutoff
2930 2931 2932 2933 2934
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2935 2936 2937

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2938 2939 2940 2941 2942 2943
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2944 2945 2946 2947 2948

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2949 2950 2951 2952 2953 2954
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2955 2956

            out_1 = helper.create_variable_for_type_inference(dtype)
2957 2958 2959 2960 2961 2962
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2963 2964 2965 2966 2967
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2968
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2969
                outputs={'Out': out_2},
2970
                attrs={'trans_x': False, 'trans_y': True},
2971
            )
A
andyjpaddle 已提交
2972 2973 2974 2975 2976
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2977 2978 2979 2980 2981
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2992 2993 2994 2995 2996 2997
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2998
            s_abs = helper.create_variable_for_type_inference(s_type)
2999 3000 3001
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
3002
            max_singular_val = helper.create_variable_for_type_inference(s_type)
3003 3004 3005 3006 3007 3008
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
3009

3010
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
3011 3012
            cutoff = rcond * max_singular_val
            y = float('inf')
3013
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
3014 3015

            condition = s_abs > cutoff
3016 3017 3018 3019 3020
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
3021 3022 3023

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
3024 3025 3026 3027 3028 3029
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3030 3031

            out_1 = helper.create_variable_for_type_inference(dtype)
3032 3033 3034 3035 3036 3037
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3038 3039 3040
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
3041 3042 3043
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3044 3045 3046 3047

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
3048
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3049
                outputs={'Out': out_2},
3050
                attrs={'trans_x': False, 'trans_y': True},
3051
            )
A
andyjpaddle 已提交
3052
            return out_2
W
Weilong Wu 已提交
3053 3054 3055 3056 3057 3058 3059


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3060

W
Weilong Wu 已提交
3061 3062
    .. math::
        Out = X^-1 * Y
3063 3064

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
3065

W
Weilong Wu 已提交
3066 3067 3068 3069 3070
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3071
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3072
            For more information, please refer to :ref:`api_guide_Name`.
3073

W
Weilong Wu 已提交
3074
    Returns:
3075
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3076
        Its data type should be the same as that of `x`.
3077

W
Weilong Wu 已提交
3078
    Examples:
3079

3080
        .. code-block:: python
3081

3082 3083 3084
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
3085

3086 3087 3088 3089 3090
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
3091

3092 3093
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
3094
    """
3095
    if in_dygraph_mode():
3096
        return _C_ops.solve(x, y)
3097 3098

    if _in_legacy_dygraph():
3099
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
3100 3101 3102 3103 3104 3105 3106

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3107 3108 3109
    helper.append_op(
        type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
    )
W
Weilong Wu 已提交
3110
    return out
3111 3112


3113 3114 3115
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3116
    r"""
3117 3118
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3132 3133 3134 3135

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3136
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3137
            zero or more batch dimensions. Its data type should be float32 or float64.
3138
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3139 3140
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3141
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3142 3143 3144 3145 3146 3147 3148 3149
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3150
        .. code-block:: python
3151

3152 3153 3154 3155
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3156

3157 3158 3159 3160 3161 3162
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3163

3164 3165
            print(out)
            # [7, -2, -5]
3166
    """
H
hong 已提交
3167
    if in_dygraph_mode():
3168
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3169

Z
zhiboniu 已提交
3170
    if paddle.in_dynamic_mode():
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
        return _legacy_C_ops.triangular_solve(
            x,
            y,
            'upper',
            upper,
            'transpose',
            transpose,
            'unitriangular',
            unitriangular,
        )
3181 3182 3183 3184 3185 3186 3187

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    helper.append_op(
        type='triangular_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular,
        },
    )
3198 3199 3200
    return out


Z
zhiboniu 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3211
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3221
        .. code-block:: python
Z
zhiboniu 已提交
3222

3223
            import paddle
Z
zhiboniu 已提交
3224

3225 3226 3227 3228 3229
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3230

3231 3232
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3233
    """
H
hong 已提交
3234
    if in_dygraph_mode():
3235
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3236 3237

    if _in_legacy_dygraph():
3238
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3239 3240 3241 3242 3243 3244

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3245 3246 3247 3248 3249 3250
    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
Z
zhiboniu 已提交
3251 3252 3253
    return out


3254 3255
def eigvalsh(x, UPLO='L', name=None):
    """
3256
    Computes the eigenvalues of a
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3274
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3275 3276
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3277 3278
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3279
    """
3280
    if in_dygraph_mode():
3281
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3282 3283 3284
        return values

    elif paddle.in_dynamic_mode():
3285
        is_test = x.stop_gradient
3286
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3287 3288 3289 3290 3291 3292 3293
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
3294 3295
                "length of Input(input) is %s." % len(x.shape)
            )
3296 3297
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3298 3299 3300 3301
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
3302
        if UPLO != 'L' and UPLO != 'U':
3303
            raise ValueError(
3304 3305
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
3306 3307 3308 3309

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
3310 3311 3312 3313 3314 3315
    check_variable_and_dtype(
        x,
        'dtype',
        ['float32', 'float64', 'complex64', 'complex128'],
        'eigvalsh',
    )
3316 3317 3318 3319 3320

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3321 3322 3323 3324 3325 3326
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO, 'is_test': is_test},
    )
3327
    return out_value
3328 3329


3330 3331 3332 3333 3334 3335 3336 3337
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3338
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3339
            should be one of float32, float64.
3340 3341
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3342
            machine precision of x_dtype.
3343 3344 3345
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3346
            for CUDA inputs.
3347
        name(str, optional): The default value is None. Normally there is no need for user to set
3348 3349 3350
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3351 3352 3353 3354 3355 3356 3357
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3390 3391 3392
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3393 3394 3395 3396
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3397 3398 3399 3400
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3401 3402 3403 3404
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3405 3406 3407 3408
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3422
    if _non_static_mode():
3423
        if in_dygraph_mode():
3424
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3425 3426
                x, y, rcond, driver
            )
3427
        else:
3428
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3429 3430
                x, y, 'rcond', rcond, 'driver', driver
            )
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3441 3442 3443 3444 3445 3446
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
3447 3448 3449 3450 3451 3452

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
    helper.append_op(
        type='lstsq',
        inputs={'X': x, 'Y': y},
        outputs={
            'Solution': solution,
            'Residuals': residuals,
            'Rank': rank,
            'SingularValues': singular_values,
        },
        attrs={'rcond': rcond, 'driver': driver},
    )
3464 3465 3466 3467 3468 3469 3470 3471

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3472 3473 3474 3475


def corrcoef(x, rowvar=True, name=None):
    """
3476

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3500

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3515 3516
            "length of Input(input) is %s." % len(x.shape)
        )
3517 3518 3519
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3520
    if c.ndim == 0:
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3535 3536 3537
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3538 3539 3540 3541
    else:
        c = paddle.clip(c, -1, 1)

    return c