Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e2241a43
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e2241a43
编写于
8月 20, 2021
作者:
H
Hao Lin
提交者:
GitHub
8月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add paddle.linalg.matrix_power OP (#34667)
上级
4d9b2d6d
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
866 addition
and
1 deletion
+866
-1
paddle/fluid/operators/matrix_power_op.cc
paddle/fluid/operators/matrix_power_op.cc
+131
-0
paddle/fluid/operators/matrix_power_op.cu
paddle/fluid/operators/matrix_power_op.cu
+27
-0
paddle/fluid/operators/matrix_power_op.h
paddle/fluid/operators/matrix_power_op.h
+277
-0
python/paddle/__init__.py
python/paddle/__init__.py
+2
-0
python/paddle/fluid/tests/unittests/test_matrix_power_op.py
python/paddle/fluid/tests/unittests/test_matrix_power_op.py
+353
-0
python/paddle/fluid/tests/unittests/white_list/op_threshold_white_list.py
...uid/tests/unittests/white_list/op_threshold_white_list.py
+1
-0
python/paddle/linalg.py
python/paddle/linalg.py
+3
-1
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-0
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+70
-0
未找到文件。
paddle/fluid/operators/matrix_power_op.cc
0 → 100644
浏览文件 @
e2241a43
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/matrix_power_op.h"
namespace
paddle
{
namespace
operators
{
class
MatrixPowerOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"matrix_power"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"matrix_power"
);
auto
dims
=
ctx
->
GetInputDim
(
"X"
);
auto
n_dim
=
dims
.
size
();
PADDLE_ENFORCE_GE
(
n_dim
,
2
,
platform
::
errors
::
InvalidArgument
(
"The Input(X) should have at least 2 dimensions. But "
"received a %d dimension tensor."
,
n_dim
));
PADDLE_ENFORCE_EQ
(
dims
[
n_dim
-
2
],
dims
[
n_dim
-
1
],
platform
::
errors
::
InvalidArgument
(
"The inner-most 2 dimensions of Input(X) all should "
"be square matrices "
"But received X's shape[-2] = %d and shape[-1] = %d."
,
dims
[
n_dim
-
2
],
dims
[
n_dim
-
1
]));
ctx
->
SetOutputDim
(
"Out"
,
dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
MatrixPowerOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), The input tensor of matrix_power op. Its shape should be "
"[*, M, M] where * is zero or more batch dimensions, and matrices "
"on the inner-most 2 dimensions all should be square matrices."
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of matrix_power op. It has the same "
"shape as the input."
);
AddAttr
<
int
>
(
"n"
,
"(int), The exponent used to calculate the power of X."
);
AddComment
(
R"DOC(
Matrix Power Operator.
Computes the n-th power of a square matrix or a batch of square matrices.
)DOC"
);
}
};
class
MatrixPowerOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>&
GetInputOutputWithSameType
()
const
override
{
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>
u_map
{
{
"X"
,
/*->*/
"Out"
}};
return
u_map
;
}
};
class
MatrixPowerGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
OP_INOUT_CHECK
(
context
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"matrix_power_grad"
);
OP_INOUT_CHECK
(
context
->
HasInput
(
"Out"
),
"Input"
,
"Out"
,
"matrix_power_grad"
);
OP_INOUT_CHECK
(
context
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out@GRAD"
,
"matrix_power_grad"
);
auto
x_dims
=
context
->
GetInputDim
(
"X"
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
context
->
HasOutput
(
x_grad_name
))
{
context
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
}
};
template
<
typename
T
>
class
MatrixPowerGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
this
->
ForwardOpType
()
+
"_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"Out"
,
this
->
Output
(
"Out"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
matrix_power
,
ops
::
MatrixPowerOp
,
ops
::
MatrixPowerOpMaker
,
ops
::
MatrixPowerOpInferVarType
,
ops
::
MatrixPowerGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
MatrixPowerGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
matrix_power_grad
,
ops
::
MatrixPowerGradOp
);
REGISTER_OP_CPU_KERNEL
(
matrix_power
,
ops
::
MatrixPowerKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MatrixPowerKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
matrix_power_grad
,
ops
::
MatrixPowerGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MatrixPowerGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/matrix_power_op.cu
0 → 100644
浏览文件 @
e2241a43
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/matrix_power_op.h"
namespace
ops
=
paddle
::
operators
;
namespace
plf
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
matrix_power
,
ops
::
MatrixPowerKernel
<
plf
::
CUDADeviceContext
,
float
>
,
ops
::
MatrixPowerKernel
<
plf
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
matrix_power_grad
,
ops
::
MatrixPowerGradKernel
<
plf
::
CUDADeviceContext
,
float
>
,
ops
::
MatrixPowerGradKernel
<
plf
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/matrix_power_op.h
0 → 100644
浏览文件 @
e2241a43
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
struct
IdentityMatrixFunctor
{
IdentityMatrixFunctor
(
const
int
m
,
T
*
output
)
:
m_
(
m
),
output_
(
output
)
{}
HOSTDEVICE
void
operator
()(
size_t
index
)
const
{
const
int
row
=
index
/
m_
%
m_
;
const
int
col
=
index
%
m_
;
output_
[
index
]
=
col
==
row
?
static_cast
<
T
>
(
1
)
:
static_cast
<
T
>
(
0
);
}
const
int
m_
;
T
*
output_
;
};
template
<
typename
DeviceContext
,
typename
T
>
void
MatrixPowerFunction
(
const
Tensor
*
X
,
const
int
n
,
Tensor
*
Out
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
const
auto
&
x_dims
=
X
->
dims
();
const
int
x_ndim
=
x_dims
.
size
();
T
*
out_data
=
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
X
->
numel
());
if
(
n
==
0
)
{
// Out = Identity Matrix
IdentityMatrixFunctor
<
T
>
functor
(
x_dims
[
x_ndim
-
1
],
out_data
);
for_range
(
functor
);
return
;
}
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
Tensor
new_x
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
int
new_n
=
n
;
if
(
n
>
0
)
{
// newX = X
framework
::
TensorCopy
(
*
X
,
ctx
.
GetPlace
(),
dev_ctx
,
&
new_x
);
}
else
{
// newX = X^{-1}, n = -n
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
X
,
&
new_x
);
new_n
=
-
n
;
}
if
(
new_n
==
1
)
{
framework
::
TensorCopy
(
new_x
,
ctx
.
GetPlace
(),
dev_ctx
,
Out
);
return
;
}
auto
no_trans_desc
=
math
::
CreateMatrixDescriptor
(
x_dims
,
0
,
false
);
if
(
new_n
==
2
)
{
// Out = newX * newX
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
blas
.
MatMul
(
new_x
,
no_trans_desc
,
new_x
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
Out
,
static_cast
<
T
>
(
0
));
return
;
}
else
if
(
new_n
==
3
)
{
// Out = (newX * newX) * newX
// Note: C[i] matrices in MatMul must not overlap, i.e. the individual
// gemm operations must be computable independently; otherwise,
// undefined behavior is expected.
Tensor
temp
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
blas
.
MatMul
(
new_x
,
no_trans_desc
,
new_x
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
&
temp
,
static_cast
<
T
>
(
0
));
blas
.
MatMul
(
temp
,
no_trans_desc
,
new_x
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
Out
,
static_cast
<
T
>
(
0
));
return
;
}
else
if
(
new_n
==
4
)
{
// Out = (newX * newX) * (newX * newX)
Tensor
temp
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
blas
.
MatMul
(
new_x
,
no_trans_desc
,
new_x
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
&
temp
,
static_cast
<
T
>
(
0
));
blas
.
MatMul
(
temp
,
no_trans_desc
,
temp
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
Out
,
static_cast
<
T
>
(
0
));
return
;
}
// Calculate Out = newX^{n} for abs(n) > 4 with time complexity as O(logN)
int
bit
=
0
;
Tensor
z
=
Tensor
(
X
->
type
());
bool
out_inited
=
false
;
Tensor
temp_out
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
Tensor
temp_z
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
while
(
new_n
>
0
)
{
bit
=
new_n
&
0x1
;
new_n
>>=
1
;
if
(
z
.
IsInitialized
())
{
blas
.
MatMul
(
z
,
no_trans_desc
,
z
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
&
temp_z
,
static_cast
<
T
>
(
0
));
framework
::
TensorCopy
(
temp_z
,
ctx
.
GetPlace
(),
dev_ctx
,
&
z
);
}
else
{
z
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
framework
::
TensorCopy
(
new_x
,
ctx
.
GetPlace
(),
dev_ctx
,
&
z
);
}
if
(
bit
==
1
)
{
if
(
out_inited
==
true
)
{
blas
.
MatMul
(
*
Out
,
no_trans_desc
,
z
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
&
temp_out
,
static_cast
<
T
>
(
0
));
framework
::
TensorCopy
(
temp_out
,
ctx
.
GetPlace
(),
dev_ctx
,
Out
);
}
else
{
framework
::
TensorCopy
(
z
,
ctx
.
GetPlace
(),
dev_ctx
,
Out
);
out_inited
=
true
;
}
}
}
return
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
MatrixPowerKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
Out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int
n
=
ctx
.
Attr
<
int
>
(
"n"
);
const
auto
&
x_dims
=
X
->
dims
();
const
int
x_ndim
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
x_dims
[
x_ndim
-
2
],
x_dims
[
x_ndim
-
1
],
platform
::
errors
::
InvalidArgument
(
"The inner-most 2 dimensions of Input(X) should be equal."
"X's shape[-2] = %d and shape[-1] = %d."
,
x_dims
[
x_ndim
-
2
],
x_dims
[
x_ndim
-
1
]));
MatrixPowerFunction
<
DeviceContext
,
T
>
(
X
,
n
,
Out
,
ctx
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
MatrixPowerGradFunction
(
const
Tensor
*
X
,
const
Tensor
*
Out
,
const
Tensor
*
dOut
,
const
int
n
,
Tensor
*
dX
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
x_dims
=
X
->
dims
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
if
(
n
==
0
)
{
// \nabla X = O
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
dX
,
static_cast
<
T
>
(
0
));
return
;
}
else
if
(
n
==
1
)
{
// \nabla X = \nabla Out
framework
::
TensorCopy
(
*
dOut
,
ctx
.
GetPlace
(),
dev_ctx
,
dX
);
return
;
}
auto
trans_desc
=
math
::
CreateMatrixDescriptor
(
x_dims
,
0
,
true
);
auto
no_trans_desc
=
math
::
CreateMatrixDescriptor
(
x_dims
,
0
,
false
);
if
(
n
==
-
1
)
{
// \nabla X = Out^{T} * \nabla Out * Out^{T}
Tensor
temp_dx
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
blas
.
MatMul
(
*
Out
,
trans_desc
,
*
dOut
,
no_trans_desc
,
static_cast
<
T
>
(
-
1
),
&
temp_dx
,
static_cast
<
T
>
(
0
));
blas
.
MatMul
(
temp_dx
,
no_trans_desc
,
*
Out
,
trans_desc
,
static_cast
<
T
>
(
1
),
dX
,
static_cast
<
T
>
(
0
));
return
;
}
Tensor
new_x
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
int
new_n
=
n
;
if
(
n
>
0
)
{
// newX = X
framework
::
TensorCopy
(
*
X
,
ctx
.
GetPlace
(),
dev_ctx
,
&
new_x
);
}
else
{
// newX = X^{-1}, n = -n
math
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
*
X
,
&
new_x
);
new_n
=
-
n
;
}
// Use chain rule blow to compute \nabla newX^{n}
// First, Get newX^{0}, newX^{1}, ..., newX^{n - 1},
// Note that newX^{0} can be omitted
std
::
vector
<
std
::
shared_ptr
<
Tensor
>>
tensor_list
(
new_n
-
1
);
tensor_list
[
0
]
=
std
::
make_shared
<
Tensor
>
(
new_x
);
int
index
=
1
;
while
(
index
<
new_n
-
1
)
{
tensor_list
[
index
]
=
std
::
make_shared
<
Tensor
>
(
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
));
blas
.
MatMul
(
*
tensor_list
[
index
-
1
],
no_trans_desc
,
new_x
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
tensor_list
[
index
].
get
(),
static_cast
<
T
>
(
0
));
index
++
;
}
// Second, \nabla newX = \sum_{i = 0}^{n - 1} (newX^{T}^{i}
// * \nabla Out
// * (newX^{T}^{n - i - 1})
Tensor
dx_new
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
blas
.
MatMul
(
*
tensor_list
[
new_n
-
2
],
trans_desc
,
*
dOut
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
&
dx_new
,
static_cast
<
T
>
(
0
));
Tensor
da_an_minus1
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
blas
.
MatMul
(
*
dOut
,
no_trans_desc
,
*
tensor_list
[
new_n
-
2
],
trans_desc
,
static_cast
<
T
>
(
1
),
&
da_an_minus1
,
static_cast
<
T
>
(
0
));
blas
.
AXPY
(
X
->
numel
(),
static_cast
<
T
>
(
1
),
da_an_minus1
.
data
<
T
>
(),
dx_new
.
data
<
T
>
());
int
start
=
0
;
while
(
start
<
new_n
-
2
)
{
Tensor
a_da
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
Tensor
a_da_a
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
blas
.
MatMul
(
*
tensor_list
[
start
],
trans_desc
,
*
dOut
,
no_trans_desc
,
static_cast
<
T
>
(
1
),
&
a_da
,
static_cast
<
T
>
(
0
));
blas
.
MatMul
(
a_da
,
no_trans_desc
,
*
tensor_list
[
new_n
-
3
-
start
],
trans_desc
,
static_cast
<
T
>
(
1
),
&
a_da_a
,
static_cast
<
T
>
(
0
));
blas
.
AXPY
(
X
->
numel
(),
static_cast
<
T
>
(
1
),
a_da_a
.
data
<
T
>
(),
dx_new
.
data
<
T
>
());
start
++
;
}
if
(
n
>
0
)
{
// \nabla X = \nabla newX
framework
::
TensorCopy
(
dx_new
,
ctx
.
GetPlace
(),
dev_ctx
,
dX
);
}
else
{
// \nabla X = newX^{T} * \nabla newX * newX^{T}
Tensor
temp_dx
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
X
->
dims
(),
dev_ctx
);
blas
.
MatMul
(
new_x
,
trans_desc
,
dx_new
,
no_trans_desc
,
static_cast
<
T
>
(
-
1
),
&
temp_dx
,
static_cast
<
T
>
(
0
));
blas
.
MatMul
(
temp_dx
,
no_trans_desc
,
new_x
,
trans_desc
,
static_cast
<
T
>
(
1
),
dX
,
static_cast
<
T
>
(
0
));
}
return
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
MatrixPowerGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
Out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
const
Tensor
*
dOut
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
int
n
=
ctx
.
Attr
<
int
>
(
"n"
);
Tensor
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
MatrixPowerGradFunction
<
DeviceContext
,
T
>
(
X
,
Out
,
dOut
,
n
,
dX
,
ctx
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/__init__.py
浏览文件 @
e2241a43
...
...
@@ -99,6 +99,7 @@ from .tensor.linalg import cholesky # noqa: F401
from
.tensor.linalg
import
bmm
# noqa: F401
from
.tensor.linalg
import
histogram
# noqa: F401
from
.tensor.linalg
import
mv
# noqa: F401
from
.tensor.linalg
import
matrix_power
# noqa: F401
from
.tensor.logic
import
equal
# noqa: F401
from
.tensor.logic
import
greater_equal
# noqa: F401
from
.tensor.logic
import
greater_than
# noqa: F401
...
...
@@ -491,6 +492,7 @@ __all__ = [ # noqa
'stack'
,
'sqrt'
,
'cholesky'
,
'matrix_power'
,
'randperm'
,
'linspace'
,
'reshape'
,
...
...
python/paddle/fluid/tests/unittests/test_matrix_power_op.py
0 → 100644
浏览文件 @
e2241a43
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle
from
op_test
import
OpTest
paddle
.
enable_static
()
class
TestMatrixPowerOp
(
OpTest
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
0
def
setUp
(
self
):
self
.
op_type
=
"matrix_power"
self
.
config
()
np
.
random
.
seed
(
123
)
mat
=
np
.
random
.
random
(
self
.
matrix_shape
).
astype
(
self
.
dtype
)
powered_mat
=
np
.
linalg
.
matrix_power
(
mat
,
self
.
n
)
self
.
inputs
=
{
"X"
:
mat
}
self
.
outputs
=
{
"Out"
:
powered_mat
}
self
.
attrs
=
{
"n"
:
self
.
n
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Out"
,
numeric_grad_delta
=
1e-5
,
max_relative_error
=
1e-7
)
class
TestMatrixPowerOpN1
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
1
class
TestMatrixPowerOpN2
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
2
class
TestMatrixPowerOpN3
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
3
class
TestMatrixPowerOpN4
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
4
class
TestMatrixPowerOpN5
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
5
class
TestMatrixPowerOpN6
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
6
class
TestMatrixPowerOpN10
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
10
class
TestMatrixPowerOpNMinus
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
-
1
def
test_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Out"
,
numeric_grad_delta
=
1e-5
,
max_relative_error
=
1e-6
)
class
TestMatrixPowerOpNMinus2
(
TestMatrixPowerOpNMinus
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
-
2
class
TestMatrixPowerOpNMinus3
(
TestMatrixPowerOpNMinus
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
-
3
class
TestMatrixPowerOpNMinus4
(
TestMatrixPowerOpNMinus
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
-
4
class
TestMatrixPowerOpNMinus5
(
TestMatrixPowerOpNMinus
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
-
5
class
TestMatrixPowerOpNMinus6
(
TestMatrixPowerOpNMinus
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
-
6
class
TestMatrixPowerOpNMinus10
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
-
10
def
test_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Out"
,
numeric_grad_delta
=
1e-5
,
max_relative_error
=
1e-6
)
class
TestMatrixPowerOpBatched1
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
8
,
4
,
4
]
self
.
dtype
=
"float64"
self
.
n
=
5
class
TestMatrixPowerOpBatched2
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
2
,
6
,
4
,
4
]
self
.
dtype
=
"float64"
self
.
n
=
4
class
TestMatrixPowerOpBatched3
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
2
,
6
,
4
,
4
]
self
.
dtype
=
"float64"
self
.
n
=
0
class
TestMatrixPowerOpBatchedLong
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
1
,
2
,
3
,
4
,
4
,
3
,
3
]
self
.
dtype
=
"float64"
self
.
n
=
3
class
TestMatrixPowerOpLarge1
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
32
,
32
]
self
.
dtype
=
"float64"
self
.
n
=
3
class
TestMatrixPowerOpLarge2
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float64"
self
.
n
=
32
class
TestMatrixPowerOpFP32
(
TestMatrixPowerOp
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float32"
self
.
n
=
2
def
test_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
,
max_relative_error
=
1e-2
)
class
TestMatrixPowerOpBatchedFP32
(
TestMatrixPowerOpFP32
):
def
config
(
self
):
self
.
matrix_shape
=
[
2
,
8
,
4
,
4
]
self
.
dtype
=
"float32"
self
.
n
=
2
class
TestMatrixPowerOpLarge1FP32
(
TestMatrixPowerOpFP32
):
def
config
(
self
):
self
.
matrix_shape
=
[
32
,
32
]
self
.
dtype
=
"float32"
self
.
n
=
2
class
TestMatrixPowerOpLarge2FP32
(
TestMatrixPowerOpFP32
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float32"
self
.
n
=
32
class
TestMatrixPowerOpFP32Minus
(
TestMatrixPowerOpFP32
):
def
config
(
self
):
self
.
matrix_shape
=
[
10
,
10
]
self
.
dtype
=
"float32"
self
.
n
=
-
1
class
TestMatrixPowerAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
np
.
random
.
seed
(
123
)
self
.
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
self
.
places
.
append
(
fluid
.
CUDAPlace
(
0
))
def
check_static_result
(
self
,
place
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
input_x
=
fluid
.
data
(
name
=
"input_x"
,
shape
=
[
4
,
4
],
dtype
=
"float64"
)
result
=
paddle
.
linalg
.
matrix_power
(
x
=
input_x
,
n
=-
2
)
input_np
=
np
.
random
.
random
([
4
,
4
]).
astype
(
"float64"
)
result_np
=
np
.
linalg
.
matrix_power
(
input_np
,
-
2
)
exe
=
fluid
.
Executor
(
place
)
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input_x"
:
input_np
},
fetch_list
=
[
result
])
self
.
assertTrue
(
np
.
allclose
(
fetches
[
0
],
np
.
linalg
.
matrix_power
(
input_np
,
-
2
)))
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
def
test_dygraph
(
self
):
for
place
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
place
):
input_np
=
np
.
random
.
random
([
4
,
4
]).
astype
(
"float64"
)
input
=
paddle
.
to_tensor
(
input_np
)
result
=
paddle
.
linalg
.
matrix_power
(
input
,
-
2
)
self
.
assertTrue
(
np
.
allclose
(
result
.
numpy
(),
np
.
linalg
.
matrix_power
(
input_np
,
-
2
)))
class
TestMatrixPowerAPIError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
input_np
=
np
.
random
.
random
([
4
,
4
]).
astype
(
"float64"
)
# input must be Variable.
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
matrix_power
,
input_np
)
# n must be int
for
n
in
[
2.0
,
'2'
,
-
2.0
]:
input
=
fluid
.
data
(
name
=
"input_float32"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
matrix_power
,
input
,
n
)
# The data type of input must be float32 or float64.
for
dtype
in
[
"bool"
,
"int32"
,
"int64"
,
"float16"
]:
input
=
fluid
.
data
(
name
=
"input_"
+
dtype
,
shape
=
[
4
,
4
],
dtype
=
dtype
)
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
matrix_power
,
input
,
2
)
# When out is set, the data type must be the same as input.
input
=
fluid
.
data
(
name
=
"input_1"
,
shape
=
[
4
,
4
],
dtype
=
"float32"
)
out
=
fluid
.
data
(
name
=
"output"
,
shape
=
[
4
,
4
],
dtype
=
"float64"
)
self
.
assertRaises
(
TypeError
,
paddle
.
linalg
.
matrix_power
,
input
,
2
,
out
)
# The number of dimensions of input must be >= 2.
input
=
fluid
.
data
(
name
=
"input_2"
,
shape
=
[
4
],
dtype
=
"float32"
)
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
matrix_power
,
input
,
2
)
# The inner-most 2 dimensions of input should be equal to each other
input
=
fluid
.
data
(
name
=
"input_3"
,
shape
=
[
4
,
5
],
dtype
=
"float32"
)
self
.
assertRaises
(
ValueError
,
paddle
.
linalg
.
matrix_power
,
input
,
2
)
class
TestMatrixPowerSingularAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
self
.
places
.
append
(
fluid
.
CUDAPlace
(
0
))
def
check_static_result
(
self
,
place
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
input
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
4
,
4
],
dtype
=
"float64"
)
result
=
paddle
.
linalg
.
matrix_power
(
x
=
input
,
n
=-
2
)
input_np
=
np
.
zeros
([
4
,
4
]).
astype
(
"float64"
)
exe
=
fluid
.
Executor
(
place
)
try
:
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input"
:
input_np
},
fetch_list
=
[
result
])
except
RuntimeError
as
ex
:
print
(
"The mat is singular"
)
pass
except
ValueError
as
ex
:
print
(
"The mat is singular"
)
pass
def
test_static
(
self
):
paddle
.
enable_static
()
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
paddle
.
disable_static
()
def
test_dygraph
(
self
):
for
place
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
place
):
input_np
=
np
.
ones
([
4
,
4
]).
astype
(
"float64"
)
input
=
fluid
.
dygraph
.
to_variable
(
input_np
)
try
:
result
=
paddle
.
linalg
.
matrix_power
(
input
,
-
2
)
except
RuntimeError
as
ex
:
print
(
"The mat is singular"
)
pass
except
ValueError
as
ex
:
print
(
"The mat is singular"
)
pass
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/white_list/op_threshold_white_list.py
浏览文件 @
e2241a43
...
...
@@ -46,6 +46,7 @@ NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST = [
'cudnn_lstm'
,
\
'rnn'
,
\
'lgamma'
,
\
'matrix_power'
,
\
]
NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
=
[
'bilinear_interp'
,
\
...
...
python/paddle/linalg.py
浏览文件 @
e2241a43
...
...
@@ -14,10 +14,12 @@
from
.tensor.linalg
import
cholesky
# noqa: F401
from
.tensor.linalg
import
norm
# noqa: F401
from
.tensor.linalg
import
matrix_power
# noqa: F401
from
.tensor
import
inverse
as
inv
# noqa: F401
__all__
=
[
'cholesky'
,
#noqa
'norm'
,
'inv'
'inv'
,
'matrix_power'
]
python/paddle/tensor/__init__.py
浏览文件 @
e2241a43
...
...
@@ -44,6 +44,7 @@ from .linalg import cholesky # noqa: F401
from
.linalg
import
bmm
# noqa: F401
from
.linalg
import
histogram
# noqa: F401
from
.linalg
import
mv
# noqa: F401
from
.linalg
import
matrix_power
# noqa: F401
from
.logic
import
equal
# noqa: F401
from
.logic
import
greater_equal
# noqa: F401
from
.logic
import
greater_than
# noqa: F401
...
...
@@ -220,6 +221,7 @@ tensor_method_func = [ #noqa
'bmm'
,
'histogram'
,
'mv'
,
'matrix_power'
,
'abs'
,
'acos'
,
'all'
,
...
...
python/paddle/tensor/linalg.py
浏览文件 @
e2241a43
...
...
@@ -941,3 +941,73 @@ def mv(x, vec, name=None):
type
=
'mv'
,
inputs
=
{
'X'
:
x
,
'Vec'
:
vec
},
outputs
=
{
'Out'
:
out
})
return
out
def
matrix_power
(
x
,
n
,
name
=
None
):
r
"""
Computes the n-th power of a square matrix or a batch of square matrices.
Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
an exponent, the equation should be:
.. math::
Out = X ^ {n}
Specifically,
- If `n > 0`, it returns the matrix or a batch of matrices raised to the power
of `n`.
- If `n = 0`, it returns the identity matrix or a batch of identity matrices.
- If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
the power of `abs(n)`.
Args:
x (Tensor): A square matrix or a batch of square matrices to be raised
to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
more batch dimensions. Its data type should be float32 or float64.
n (int): The exponent. It can be any positive, negative integer or zero.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
data type should be the same as that of `x`.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1, 2, 3],
[1, 4, 9],
[1, 8, 27]], dtype='float64')
print(paddle.matrix_power(x, 2))
# [[6. , 34. , 102.],
# [14. , 90. , 282.],
# [36. , 250., 804.]]
print(paddle.matrix_power(x, 0))
# [[1., 0., 0.],
# [0., 1., 0.],
# [0., 0., 1.]]
print(paddle.matrix_power(x, -2))
# [[ 12.91666667, -12.75000000, 2.83333333 ],
# [-7.66666667 , 8. , -1.83333333 ],
# [ 1.80555556 , -1.91666667 , 0.44444444 ]]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
matrix_power
(
x
,
"n"
,
n
)
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
],
'matrix_power'
)
check_type
(
n
,
'n'
,
int
,
'matrix_power'
)
helper
=
LayerHelper
(
'matrix_power'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'matrix_power'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'n'
:
n
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录