Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2ce91c33
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2ce91c33
编写于
12月 31, 2021
作者:
Z
zhiboniu
提交者:
GitHub
12月 31, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new API paddle.linalg.lu/lu_unpack (#38617)
上级
89ce6db8
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
956 addition
and
0 deletion
+956
-0
paddle/fluid/operators/lu_unpack_op.cc
paddle/fluid/operators/lu_unpack_op.cc
+184
-0
paddle/fluid/operators/lu_unpack_op.cu
paddle/fluid/operators/lu_unpack_op.cu
+30
-0
paddle/fluid/operators/lu_unpack_op.h
paddle/fluid/operators/lu_unpack_op.h
+144
-0
python/paddle/fluid/tests/unittests/test_lu_op.py
python/paddle/fluid/tests/unittests/test_lu_op.py
+111
-0
python/paddle/fluid/tests/unittests/test_lu_unpack_op.py
python/paddle/fluid/tests/unittests/test_lu_unpack_op.py
+280
-0
python/paddle/linalg.py
python/paddle/linalg.py
+4
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+4
-0
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+199
-0
未找到文件。
paddle/fluid/operators/lu_unpack_op.cc
0 → 100644
浏览文件 @
2ce91c33
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/lu_unpack_op.h"
namespace
paddle
{
namespace
operators
{
class
LU_UnpackOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddComment
(
R"DOC(Unpack L U and P to single matrix tensor,
unpack L and U matrix from LU, unpack permutation matrix Pmat from Pivtos .
)DOC"
);
AddInput
(
"X"
,
"(Tensor) The input LU tensor, shape of (*,m,n)"
);
AddInput
(
"Pivots"
,
"(Tensor) The input Pivots tensor, shape of (*,min(m,n))"
);
AddOutput
(
"Pmat"
,
"(Tensor) The output permutation matrix tensor, shape of (*, m, m)"
);
AddOutput
(
"L"
,
"(Tensor) The output lower triangular matrix tensor"
);
AddOutput
(
"U"
,
"(Tensor) The output upper triangular matrix tensor"
);
AddAttr
<
bool
>
(
"unpack_ludata"
,
"Whether to unpack L and U"
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"unpack_pivots"
,
"Whether to unpack permutation matrix"
)
.
SetDefault
(
true
);
}
};
class
LU_UnpackOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
OP_INOUT_CHECK
(
context
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"LU_Unpack"
);
OP_INOUT_CHECK
(
context
->
HasInput
(
"Pivots"
),
"Input"
,
"Pivots"
,
"LU_Unpack"
);
OP_INOUT_CHECK
(
context
->
HasOutput
(
"L"
),
"Output"
,
"L"
,
"LU_Unpack"
);
OP_INOUT_CHECK
(
context
->
HasOutput
(
"U"
),
"Output"
,
"U"
,
"LU_Unpack"
);
OP_INOUT_CHECK
(
context
->
HasOutput
(
"Pmat"
),
"Output"
,
"Pmat"
,
"LU_Unpack"
);
bool
unpack_ludata
=
context
->
Attrs
().
Get
<
bool
>
(
"unpack_ludata"
);
bool
unpack_pivots
=
context
->
Attrs
().
Get
<
bool
>
(
"unpack_pivots"
);
auto
x_dims
=
context
->
GetInputDim
(
"X"
);
int
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_GE
(
x_rank
,
2
,
platform
::
errors
::
InvalidArgument
(
"the rank of input must greater than 2"
));
// context->SetOutputDim("Out", x_dims);
int
m
=
x_dims
[
x_rank
-
1
];
int
n
=
x_dims
[
x_rank
-
2
];
int
min_mn
=
std
::
min
(
m
,
n
);
if
(
unpack_ludata
)
{
auto
ldims
=
x_dims
;
auto
udims
=
x_dims
;
if
(
m
>=
n
)
{
udims
[
x_rank
-
2
]
=
min_mn
;
}
else
{
ldims
[
x_rank
-
1
]
=
min_mn
;
}
context
->
SetOutputDim
(
"U"
,
udims
);
context
->
SetOutputDim
(
"L"
,
ldims
);
}
if
(
unpack_pivots
)
{
auto
pdims
=
x_dims
;
pdims
[
x_rank
-
1
]
=
m
;
context
->
SetOutputDim
(
"Pmat"
,
pdims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
};
class
LU_UnpackOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
var_type
=
ctx
->
GetInputType
(
"X"
,
0
);
auto
data_type
=
ctx
->
GetInputDataType
(
"X"
,
0
);
ctx
->
SetOutputType
(
"L"
,
var_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputDataType
(
"L"
,
data_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputType
(
"U"
,
var_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputDataType
(
"U"
,
data_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputType
(
"Pmat"
,
var_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputDataType
(
"Pmat"
,
data_type
,
framework
::
ALL_ELEMENTS
);
}
};
template
<
typename
T
>
class
LU_UnpackOpGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
retv
->
SetType
(
"lu_unpack_grad"
);
retv
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
retv
->
SetInput
(
"Pivots"
,
this
->
Input
(
"Pivots"
));
retv
->
SetInput
(
"L"
,
this
->
Output
(
"L"
));
retv
->
SetInput
(
"U"
,
this
->
Output
(
"U"
));
retv
->
SetInput
(
"Pmat"
,
this
->
Output
(
"Pmat"
));
retv
->
SetInput
(
framework
::
GradVarName
(
"L"
),
this
->
OutputGrad
(
"L"
));
retv
->
SetInput
(
framework
::
GradVarName
(
"U"
),
this
->
OutputGrad
(
"U"
));
retv
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
retv
->
SetAttrMap
(
this
->
Attrs
());
}
};
class
LU_UnpackGradOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
var_type
=
ctx
->
GetInputType
(
"X"
,
0
);
auto
data_type
=
ctx
->
GetInputDataType
(
"X"
,
0
);
ctx
->
SetOutputType
(
framework
::
GradVarName
(
"X"
),
var_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputDataType
(
framework
::
GradVarName
(
"X"
),
data_type
,
framework
::
ALL_ELEMENTS
);
}
};
class
LU_UnpackGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"lu_unpack"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"L"
)),
"Input"
,
"L@GRAD"
,
"lu_unpack"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"U"
)),
"Input"
,
"U@GRAD"
,
"lu_unpack"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
dtype
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
return
framework
::
OpKernelType
(
dtype
,
ctx
.
GetPlace
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OPERATOR
(
lu_unpack
,
ops
::
LU_UnpackOp
,
ops
::
LU_UnpackOpMaker
,
ops
::
LU_UnpackOpVarTypeInference
,
ops
::
LU_UnpackOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
LU_UnpackOpGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
lu_unpack_grad
,
ops
::
LU_UnpackGradOp
,
ops
::
LU_UnpackGradOpVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
lu_unpack
,
ops
::
LU_UnpackKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
LU_UnpackKernel
<
plat
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
lu_unpack_grad
,
ops
::
LU_UnpackGradKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
LU_UnpackGradKernel
<
plat
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/lu_unpack_op.cu
0 → 100644
浏览文件 @
2ce91c33
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/lu_unpack_op.h"
namespace
paddle
{
namespace
operators
{}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
lu_unpack
,
ops
::
LU_UnpackKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
LU_UnpackKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
lu_unpack_grad
,
ops
::
LU_UnpackGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
LU_UnpackGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/lu_unpack_op.h
0 → 100644
浏览文件 @
2ce91c33
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lu_op.h"
#include "paddle/fluid/operators/tril_triu_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensorArray
=
framework
::
LoDTensorArray
;
template
<
typename
DeviceContext
,
typename
T
>
class
LU_UnpackKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
xin
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
P
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Pivots"
);
auto
ltensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"L"
);
auto
utensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"U"
);
auto
ptensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Pmat"
);
auto
unpack_ludata
=
ctx
.
Attr
<
bool
>
(
"unpack_ludata"
);
auto
unpack_pivots
=
ctx
.
Attr
<
bool
>
(
"unpack_pivots"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
xdims
=
xin
->
dims
();
int
xrank
=
xdims
.
size
();
int64_t
m
=
xdims
[
xrank
-
2
];
int64_t
n
=
xdims
[
xrank
-
1
];
int64_t
k
=
std
::
min
(
m
,
n
);
if
(
unpack_ludata
)
{
ltensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
utensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
Tensor
L
,
U
;
LU_Unpack
<
DeviceContext
,
T
>
(
dev_ctx
,
xin
,
&
L
,
&
U
);
if
(
m
>=
n
)
{
framework
::
TensorCopy
(
L
,
ctx
.
GetPlace
(),
ltensor
);
Tensor_narrow
<
DeviceContext
,
T
>
(
ctx
,
&
U
,
utensor
,
0
,
k
,
0
,
k
);
}
else
{
framework
::
TensorCopy
(
U
,
ctx
.
GetPlace
(),
utensor
);
Tensor_narrow
<
DeviceContext
,
T
>
(
ctx
,
&
L
,
ltensor
,
0
,
k
,
0
,
k
);
}
}
if
(
unpack_pivots
)
{
ptensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Unpack_Pivot
<
DeviceContext
,
T
>
(
dev_ctx
,
*
P
,
ptensor
,
m
,
k
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LU_UnpackGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
dl
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"L"
));
auto
du
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"U"
));
auto
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
framework
::
Tensor
dl_tril
,
du_triu
;
const
auto
ldims
=
dl
->
dims
();
dl_tril
.
Resize
(
ldims
);
auto
H
=
ldims
[
ldims
.
size
()
-
2
];
auto
W
=
ldims
[
ldims
.
size
()
-
1
];
auto
L_dataptr
=
dl_tril
.
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
platform
::
ForRange
<
DeviceContext
>
l_for_range
(
dev_ctx
,
dl
->
numel
());
TrilTriuCompute
<
T
>
tril_computer
(
dl
->
data
<
T
>
(),
-
1
,
true
,
H
,
W
,
L_dataptr
);
l_for_range
(
tril_computer
);
const
auto
udims
=
du
->
dims
();
du_triu
.
Resize
(
udims
);
H
=
udims
[
udims
.
size
()
-
2
];
W
=
udims
[
udims
.
size
()
-
1
];
auto
U_dataptr
=
du_triu
.
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
platform
::
ForRange
<
DeviceContext
>
u_for_range
(
dev_ctx
,
du
->
numel
());
TrilTriuCompute
<
T
>
triu_computer
(
du
->
data
<
T
>
(),
0
,
false
,
H
,
W
,
U_dataptr
);
u_for_range
(
triu_computer
);
auto
xdims
=
dx
->
dims
();
int
xrank
=
xdims
.
size
();
int64_t
m
=
xdims
[
xrank
-
2
];
int64_t
n
=
xdims
[
xrank
-
1
];
int64_t
k
=
std
::
min
(
m
,
n
);
std
::
vector
<
int64_t
>
axes
=
{
xrank
-
2
,
xrank
-
1
};
std
::
vector
<
int64_t
>
slice_starts
(
2
,
0
);
std
::
vector
<
int64_t
>
slice_ends
(
2
,
0
);
auto
valuedims
=
vectorize
(
xdims
);
math
::
SetConstant
<
DeviceContext
,
T
>
setter
;
setter
(
dev_ctx
,
dx
,
static_cast
<
T
>
(
0
));
if
(
m
<=
n
)
{
slice_starts
[
0
]
=
0
;
slice_starts
[
1
]
=
0
;
slice_ends
[
0
]
=
k
;
slice_ends
[
1
]
=
k
;
valuedims
[
xrank
-
2
]
=
k
;
valuedims
[
xrank
-
1
]
=
k
;
SetValueCompute_dispatch
<
DeviceContext
,
T
>
(
ctx
,
dx
,
&
dl_tril
,
dx
,
axes
,
&
slice_starts
,
&
slice_ends
,
valuedims
,
xrank
);
Tensor_Add
<
DeviceContext
,
T
>
(
dev_ctx
,
*
dx
,
du_triu
,
dx
);
}
else
{
slice_starts
[
0
]
=
0
;
slice_starts
[
1
]
=
0
;
slice_ends
[
0
]
=
k
;
slice_ends
[
1
]
=
k
;
valuedims
[
xrank
-
2
]
=
k
;
valuedims
[
xrank
-
1
]
=
k
;
SetValueCompute_dispatch
<
DeviceContext
,
T
>
(
ctx
,
dx
,
&
du_triu
,
dx
,
axes
,
&
slice_starts
,
&
slice_ends
,
valuedims
,
xrank
);
Tensor_Add
<
DeviceContext
,
T
>
(
dev_ctx
,
*
dx
,
dl_tril
,
dx
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_lu_op.py
浏览文件 @
2ce91c33
...
...
@@ -170,5 +170,116 @@ class TestLUOp3(TestLUOp):
self
.
dtype
=
"float64"
class
TestLUAPI
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
def
run_lu_dygraph
(
shape
,
dtype
):
if
dtype
==
"float32"
:
np_dtype
=
np
.
float32
elif
dtype
==
"float64"
:
np_dtype
=
np
.
float64
a
=
np
.
random
.
rand
(
*
shape
).
astype
(
np_dtype
)
m
=
a
.
shape
[
-
2
]
n
=
a
.
shape
[
-
1
]
min_mn
=
min
(
m
,
n
)
pivot
=
True
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
paddle
.
disable_static
(
place
)
batch_size
=
a
.
size
//
(
a
.
shape
[
-
1
]
*
a
.
shape
[
-
2
])
x
=
paddle
.
to_tensor
(
a
,
dtype
=
dtype
)
sP
,
sl
,
sU
=
scipy_lu
(
a
,
pivot
)
sL
=
np
.
tril
(
sl
,
-
1
)
LU
,
P
,
Info
=
paddle
.
linalg
.
lu
(
x
,
pivot
=
pivot
,
get_infos
=
True
)
m
,
n
=
LU
.
shape
[
-
2
],
LU
.
shape
[
-
1
]
tril
=
np
.
tril
(
LU
,
-
1
)[...,
:
m
,
:
m
]
triu
=
np
.
triu
(
LU
)[...,
:
n
,
:
n
]
mtp
=
Pmat_to_perm
(
sP
,
min
(
m
,
n
))
nP
=
perm_to_Pmat
(
P
,
sP
.
shape
[
-
1
])
self
.
assertTrue
(
np
.
allclose
(
sU
,
triu
,
atol
=
1e-5
))
self
.
assertTrue
(
np
.
allclose
(
sL
,
tril
,
atol
=
1e-5
))
self
.
assertTrue
(
np
.
allclose
(
P
,
mtp
,
atol
=
1e-5
))
self
.
assertTrue
(
np
.
allclose
(
nP
,
sP
,
atol
=
1e-5
))
tensor_shapes
=
[
(
3
,
5
),
(
5
,
5
),
(
5
,
3
),
# 2-dim Tensors
(
2
,
3
,
5
),
(
3
,
5
,
5
),
(
4
,
5
,
3
),
# 3-dim Tensors
(
2
,
5
,
3
,
5
),
(
3
,
5
,
5
,
5
),
(
4
,
5
,
5
,
3
)
# 4-dim Tensors
]
dtypes
=
[
"float32"
,
"float64"
]
for
tensor_shape
,
dtype
in
itertools
.
product
(
tensor_shapes
,
dtypes
):
run_lu_dygraph
(
tensor_shape
,
dtype
)
def
test_static
(
self
):
paddle
.
enable_static
()
def
run_lu_static
(
shape
,
dtype
):
if
dtype
==
"float32"
:
np_dtype
=
np
.
float32
elif
dtype
==
"float64"
:
np_dtype
=
np
.
float64
a
=
np
.
random
.
rand
(
*
shape
).
astype
(
np_dtype
)
m
=
a
.
shape
[
-
2
]
n
=
a
.
shape
[
-
1
]
min_mn
=
min
(
m
,
n
)
pivot
=
True
places
=
[]
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
batch_size
=
a
.
size
//
(
a
.
shape
[
-
1
]
*
a
.
shape
[
-
2
])
sP
,
sl
,
sU
=
scipy_lu
(
a
,
pivot
)
sL
=
np
.
tril
(
sl
,
-
1
)
ashape
=
np
.
array
(
a
.
shape
)
lshape
=
np
.
array
(
sL
.
shape
)
ushape
=
np
.
array
(
sU
.
shape
)
lpad
=
(
len
(
sL
.
shape
)
-
2
)
*
[(
0
,
0
)]
+
list
((
(
0
,
(
ashape
-
lshape
)[
-
2
]),
(
0
,
(
ashape
-
lshape
)[
-
1
])))
upad
=
(
len
(
sU
.
shape
)
-
2
)
*
[(
0
,
0
)]
+
list
((
(
0
,
(
ashape
-
ushape
)[
-
2
]),
(
0
,
(
ashape
-
ushape
)[
-
1
])))
NsL
=
np
.
pad
(
sL
,
lpad
)
NsU
=
np
.
pad
(
sU
,
upad
)
NLU
=
NsL
+
NsU
x
=
paddle
.
fluid
.
data
(
name
=
"input"
,
shape
=
shape
,
dtype
=
dtype
)
lu
,
p
=
paddle
.
linalg
.
lu
(
x
,
pivot
=
pivot
)
exe
=
fluid
.
Executor
(
place
)
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input"
:
a
},
fetch_list
=
[
lu
,
p
])
self
.
assertTrue
(
np
.
allclose
(
fetches
[
0
],
NLU
,
atol
=
1e-5
))
tensor_shapes
=
[
(
3
,
5
),
(
5
,
5
),
(
5
,
3
),
# 2-dim Tensors
(
2
,
3
,
5
),
(
3
,
5
,
5
),
(
4
,
5
,
3
),
# 3-dim Tensors
(
2
,
5
,
3
,
5
),
(
3
,
5
,
5
,
5
),
(
4
,
5
,
5
,
3
)
# 4-dim Tensors
]
dtypes
=
[
"float32"
,
"float64"
]
for
tensor_shape
,
dtype
in
itertools
.
product
(
tensor_shapes
,
dtypes
):
run_lu_static
(
tensor_shape
,
dtype
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_lu_unpack_op.py
0 → 100644
浏览文件 @
2ce91c33
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
op_test
import
OpTest
import
unittest
import
itertools
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
scipy
import
scipy.linalg
import
copy
def
scipy_lu_unpack
(
A
):
shape
=
A
.
shape
if
len
(
shape
)
==
2
:
return
scipy
.
linalg
.
lu
(
A
)
else
:
preshape
=
shape
[:
-
2
]
batchsize
=
np
.
product
(
shape
)
//
(
shape
[
-
2
]
*
shape
[
-
1
])
Plst
=
[]
Llst
=
[]
Ulst
=
[]
NA
=
A
.
reshape
((
-
1
,
shape
[
-
2
],
shape
[
-
1
]))
for
b
in
range
(
batchsize
):
As
=
NA
[
b
]
P
,
L
,
U
=
scipy
.
linalg
.
lu
(
As
)
pshape
=
P
.
shape
lshape
=
L
.
shape
ushape
=
U
.
shape
Plst
.
append
(
P
)
Llst
.
append
(
L
)
Ulst
.
append
(
U
)
return
np
.
array
(
Plst
).
reshape
(
preshape
+
pshape
),
np
.
array
(
Llst
).
reshape
(
preshape
+
lshape
),
np
.
array
(
Ulst
).
reshape
(
preshape
+
ushape
)
def
Pmat_to_perm
(
Pmat_org
,
cut
):
Pmat
=
copy
.
deepcopy
(
Pmat_org
)
shape
=
Pmat
.
shape
rows
=
shape
[
-
2
]
cols
=
shape
[
-
1
]
batchsize
=
max
(
1
,
np
.
product
(
shape
[:
-
2
]))
P
=
Pmat
.
reshape
(
batchsize
,
rows
,
cols
)
permmat
=
[]
for
b
in
range
(
batchsize
):
permlst
=
[]
sP
=
P
[
b
]
for
c
in
range
(
min
(
rows
,
cols
)):
idx
=
np
.
argmax
(
sP
[:,
c
])
permlst
.
append
(
idx
)
tmp
=
copy
.
deepcopy
(
sP
[
c
,
:])
sP
[
c
,
:]
=
sP
[
idx
,
:]
sP
[
idx
,
:]
=
tmp
permmat
.
append
(
permlst
)
Pivot
=
np
.
array
(
permmat
).
reshape
(
list
(
shape
[:
-
2
])
+
[
rows
,
])
+
1
return
Pivot
[...,
:
cut
]
def
perm_to_Pmat
(
perm
,
dim
):
pshape
=
perm
.
shape
bs
=
int
(
np
.
product
(
perm
.
shape
[:
-
1
]).
item
())
perm
=
perm
.
reshape
((
bs
,
pshape
[
-
1
]))
oneslst
=
[]
for
i
in
range
(
bs
):
idlst
=
np
.
arange
(
dim
)
perm_item
=
perm
[
i
,
:]
for
idx
,
p
in
enumerate
(
perm_item
-
1
):
temp
=
idlst
[
idx
]
idlst
[
idx
]
=
idlst
[
p
]
idlst
[
p
]
=
temp
ones
=
paddle
.
eye
(
dim
)
nmat
=
paddle
.
scatter
(
ones
,
paddle
.
to_tensor
(
idlst
),
ones
)
oneslst
.
append
(
nmat
)
return
np
.
array
(
oneslst
).
reshape
(
list
(
pshape
[:
-
1
])
+
[
dim
,
dim
])
# m > n
class
TestLU_UnpackOp
(
OpTest
):
"""
case 1
"""
def
config
(
self
):
self
.
x_shape
=
[
2
,
12
,
10
]
self
.
unpack_ludata
=
True
self
.
unpack_pivots
=
True
self
.
dtype
=
"float64"
def
set_output
(
self
,
A
):
sP
,
sL
,
sU
=
scipy_lu_unpack
(
A
)
self
.
L
=
sL
self
.
U
=
sU
self
.
P
=
sP
def
setUp
(
self
):
self
.
op_type
=
"lu_unpack"
self
.
config
()
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
if
paddle
.
in_dynamic_mode
():
xt
=
paddle
.
to_tensor
(
x
)
lu
,
pivots
=
paddle
.
linalg
.
lu
(
xt
)
lu
=
lu
.
numpy
()
pivots
=
pivots
.
numpy
()
else
:
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
place
=
fluid
.
CPUPlace
()
if
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
xv
=
paddle
.
fluid
.
data
(
name
=
"input"
,
shape
=
self
.
x_shape
,
dtype
=
self
.
dtype
)
lu
,
p
=
paddle
.
linalg
.
lu
(
xv
)
exe
=
fluid
.
Executor
(
place
)
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input"
:
x
},
fetch_list
=
[
lu
,
p
])
lu
,
pivots
=
fetches
[
0
],
fetches
[
1
]
self
.
inputs
=
{
'X'
:
lu
,
'Pivots'
:
pivots
}
self
.
attrs
=
{
'unpack_ludata'
:
self
.
unpack_ludata
,
'unpack_pivots'
:
self
.
unpack_pivots
}
self
.
set_output
(
x
)
self
.
outputs
=
{
'Pmat'
:
self
.
P
,
'L'
:
self
.
L
,
'U'
:
self
.
U
,
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
[
'L'
,
'U'
])
# m = n
class
TestLU_UnpackOp2
(
TestLU_UnpackOp
):
"""
case 2
"""
def
config
(
self
):
self
.
x_shape
=
[
2
,
10
,
10
]
self
.
unpack_ludata
=
True
self
.
unpack_pivots
=
True
self
.
dtype
=
"float64"
# m < n
class
TestLU_UnpackOp3
(
TestLU_UnpackOp
):
"""
case 3
"""
def
config
(
self
):
self
.
x_shape
=
[
2
,
10
,
12
]
self
.
unpack_ludata
=
True
self
.
unpack_pivots
=
True
self
.
dtype
=
"float64"
class
TestLU_UnpackAPI
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
def
run_lu_unpack_dygraph
(
shape
,
dtype
):
if
dtype
==
"float32"
:
np_dtype
=
np
.
float32
elif
dtype
==
"float64"
:
np_dtype
=
np
.
float64
a
=
np
.
random
.
rand
(
*
shape
).
astype
(
np_dtype
)
m
=
a
.
shape
[
-
2
]
n
=
a
.
shape
[
-
1
]
min_mn
=
min
(
m
,
n
)
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
paddle
.
disable_static
(
place
)
x
=
paddle
.
to_tensor
(
a
,
dtype
=
dtype
)
sP
,
sL
,
sU
=
scipy_lu_unpack
(
a
)
LU
,
P
=
paddle
.
linalg
.
lu
(
x
)
pP
,
pL
,
pU
=
paddle
.
linalg
.
lu_unpack
(
LU
,
P
)
self
.
assertTrue
(
np
.
allclose
(
sU
,
pU
,
atol
=
1e-5
))
self
.
assertTrue
(
np
.
allclose
(
sL
,
pL
,
atol
=
1e-5
))
self
.
assertTrue
(
np
.
allclose
(
sP
,
pP
,
atol
=
1e-5
))
tensor_shapes
=
[
(
3
,
5
),
(
5
,
5
),
(
5
,
3
),
# 2-dim Tensors
(
2
,
3
,
5
),
(
3
,
5
,
5
),
(
4
,
5
,
3
),
# 3-dim Tensors
(
2
,
5
,
3
,
5
),
(
3
,
5
,
5
,
5
),
(
4
,
5
,
5
,
3
)
# 4-dim Tensors
]
dtypes
=
[
"float32"
,
"float64"
]
for
tensor_shape
,
dtype
in
itertools
.
product
(
tensor_shapes
,
dtypes
):
run_lu_unpack_dygraph
(
tensor_shape
,
dtype
)
def
test_static
(
self
):
paddle
.
enable_static
()
def
run_lu_static
(
shape
,
dtype
):
if
dtype
==
"float32"
:
np_dtype
=
np
.
float32
elif
dtype
==
"float64"
:
np_dtype
=
np
.
float64
a
=
np
.
random
.
rand
(
*
shape
).
astype
(
np_dtype
)
m
=
a
.
shape
[
-
2
]
n
=
a
.
shape
[
-
1
]
min_mn
=
min
(
m
,
n
)
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
sP
,
sL
,
sU
=
scipy_lu_unpack
(
a
)
x
=
paddle
.
fluid
.
data
(
name
=
"input"
,
shape
=
shape
,
dtype
=
dtype
)
lu
,
p
=
paddle
.
linalg
.
lu
(
x
)
pP
,
pL
,
pU
=
paddle
.
linalg
.
lu_unpack
(
lu
,
p
)
exe
=
fluid
.
Executor
(
place
)
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input"
:
a
},
fetch_list
=
[
pP
,
pL
,
pU
])
self
.
assertTrue
(
np
.
allclose
(
fetches
[
0
],
sP
,
atol
=
1e-5
))
self
.
assertTrue
(
np
.
allclose
(
fetches
[
1
],
sL
,
atol
=
1e-5
))
self
.
assertTrue
(
np
.
allclose
(
fetches
[
2
],
sU
,
atol
=
1e-5
))
tensor_shapes
=
[
(
3
,
5
),
(
5
,
5
),
(
5
,
3
),
# 2-dim Tensors
(
2
,
3
,
5
),
(
3
,
5
,
5
),
(
4
,
5
,
3
),
# 3-dim Tensors
(
2
,
5
,
3
,
5
),
(
3
,
5
,
5
,
5
),
(
4
,
5
,
5
,
3
)
# 4-dim Tensors
]
dtypes
=
[
"float32"
,
"float64"
]
for
tensor_shape
,
dtype
in
itertools
.
product
(
tensor_shapes
,
dtypes
):
run_lu_static
(
tensor_shape
,
dtype
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/linalg.py
浏览文件 @
2ce91c33
...
...
@@ -27,6 +27,8 @@ from .tensor.linalg import matrix_rank # noqa: F401
from
.tensor.linalg
import
svd
# noqa: F401
from
.tensor.linalg
import
eigvalsh
# noqa: F401
from
.tensor.linalg
import
qr
# noqa: F401
from
.tensor.linalg
import
lu
# noqa: F401
from
.tensor.linalg
import
lu_unpack
# noqa: F401
from
.tensor.linalg
import
eigh
# noqa: F401
from
.tensor.linalg
import
det
# noqa: F401
from
.tensor.linalg
import
slogdet
# noqa: F401
...
...
@@ -46,6 +48,8 @@ __all__ = [
'matrix_rank'
,
'svd'
,
'qr'
,
'lu'
,
'lu_unpack'
,
'matrix_power'
,
'det'
,
'slogdet'
,
...
...
python/paddle/tensor/__init__.py
浏览文件 @
2ce91c33
...
...
@@ -63,6 +63,8 @@ from .linalg import eigh # noqa: F401
from
.linalg
import
pinv
# noqa: F401
from
.linalg
import
solve
# noqa: F401
from
.linalg
import
cholesky_solve
# noqa: F401
from
.linalg
import
lu
# noqa: F401
from
.linalg
import
lu_unpack
# noqa: F401
from
.logic
import
equal
# noqa: F401
from
.logic
import
greater_equal
# noqa: F401
from
.logic
import
greater_than
# noqa: F401
...
...
@@ -459,6 +461,8 @@ tensor_method_func = [ #noqa
'asinh'
,
'atanh'
,
'acosh'
,
'lu'
,
'lu_unpack'
,
'as_complex'
,
'as_real'
,
'rad2deg'
,
...
...
python/paddle/tensor/linalg.py
浏览文件 @
2ce91c33
...
...
@@ -1823,6 +1823,205 @@ def qr(x, mode="reduced", name=None):
return
q
,
r
def
lu
(
x
,
pivot
=
True
,
get_infos
=
False
,
name
=
None
):
r
"""
Computes the LU factorization of an N-D(N>=2) matrix x.
Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
upper triangular matrix U are combined to a single LU matrix.
Pivoting is done if pivot is set to True.
P mat can be get by pivots:
# ones = eye(rows) #eye matrix of rank rows
# for i in range(cols):
# swap(ones[i], ones[pivots[i]])
# return ones
Args:
X (Tensor): the tensor to factor of N-dimensions(N>=2).
pivot (bool, optional): controls whether pivoting is done. Default: True.
get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
factorization (Tensor): LU matrix, the factorization of input X.
pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
intermediate transpositions of rows. The final permutation `perm` could be
reconstructed by this, details refer to upper example.
infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2))
where non-zero values indicate whether factorization for the matrix or each minibatch
has succeeded or failed.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
lu,p,info = paddle.linalg.lu(x, get_infos=True)
# >>> lu:
# Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[5. , 6. ],
# [0.20000000, 0.80000000],
# [0.60000000, 0.50000000]])
# >>> p
# Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
# [3, 3])
# >>> info
# Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
# 0)
P,L,U = paddle.linalg.lu_unpack(lu,p)
# >>> P
# (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[0., 1., 0.],
# [0., 0., 1.],
# [1., 0., 0.]]),
# >>> L
# Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[1. , 0. ],
# [0.20000000, 1. ],
# [0.60000000, 0.50000000]]),
# >>> U
# Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[5. , 6. ],
# [0. , 0.80000000]]))
# one can verify : X = P @ L @ U ;
"""
if
in_dygraph_mode
():
LU
,
Piv
,
Info
=
_C_ops
.
lu
(
x
,
'pivots'
,
pivot
)
if
get_infos
:
return
LU
,
Piv
,
Info
else
:
return
LU
,
Piv
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
],
'lu'
)
helper
=
LayerHelper
(
'lu'
,
**
locals
())
lu
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
p
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int'
)
info
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int'
)
attrs
=
dict
()
attrs
[
'pivots'
]
=
pivot
helper
.
append_op
(
type
=
'lu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
lu
,
'Pivots'
:
p
,
'Infos'
:
info
},
attrs
=
attrs
)
if
get_infos
:
return
lu
,
p
,
info
else
:
return
lu
,
p
def
lu_unpack
(
x
,
y
,
unpack_ludata
=
True
,
unpack_pivots
=
True
,
name
=
None
):
r
"""
Unpack L U and P to single matrix tensor .
unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .
P mat can be get by pivots:
# ones = eye(rows) #eye matrix of rank rows
# for i in range(cols):
# swap(ones[i], ones[pivots[i]])
Args:
x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.
y (Tensor): Pivots get from paddle.linalg.lu.
unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.
unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
P (Tensor): Permutation matrix P of lu factorization.
L (Tensor): The lower triangular matrix tensor of lu factorization.
U (Tensor): The upper triangular matrix tensor of lu factorization.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
lu,p,info = paddle.linalg.lu(x, get_infos=True)
# >>> lu:
# Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[5. , 6. ],
# [0.20000000, 0.80000000],
# [0.60000000, 0.50000000]])
# >>> p
# Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
# [3, 3])
# >>> info
# Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
# 0)
P,L,U = paddle.linalg.lu_unpack(lu,p)
# >>> P
# (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[0., 1., 0.],
# [0., 0., 1.],
# [1., 0., 0.]]),
# >>> L
# Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[1. , 0. ],
# [0.20000000, 1. ],
# [0.60000000, 0.50000000]]),
# >>> U
# Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
# [[5. , 6. ],
# [0. , 0.80000000]]))
# one can verify : X = P @ L @ U ;
"""
if
in_dygraph_mode
():
P
,
L
,
U
=
_C_ops
.
lu_unpack
(
x
,
y
,
'unpack_ludata'
,
unpack_ludata
,
'unpack_pivots'
,
unpack_pivots
)
return
P
,
L
,
U
check_variable_and_dtype
(
x
,
'dtype'
,
[
'float32'
,
'float64'
],
'lu_unpack'
)
helper
=
LayerHelper
(
'lu_unpack'
,
**
locals
())
p
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
l
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
u
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
attrs
=
dict
()
attrs
[
'unpack_ludata'
]
=
unpack_ludata
attrs
[
'unpack_pivots'
]
=
unpack_pivots
helper
.
append_op
(
type
=
'lu_unpack'
,
inputs
=
{
'X'
:
x
,
'Pivots'
:
y
},
outputs
=
{
'Pmat'
:
p
,
'L'
:
l
,
'U'
:
u
},
attrs
=
attrs
)
return
p
,
l
,
u
def
eig
(
x
,
name
=
None
):
"""
This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录