linalg.py 131.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _non_static_mode, in_dygraph_mode
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
20 21
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
22 23 24
from .math import multiply, add
from .logic import logical_not
from .creation import full
25

A
andyjpaddle 已提交
26
import paddle
27
from paddle.common_ops_import import VarDesc
28
from paddle import _C_ops, _legacy_C_ops
29

30 31
__all__ = []

32 33 34
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
87
        return _C_ops.transpose(x, perm)
88 89
    else:
        if _in_legacy_dygraph():
90
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
116 117 118 119 120 121 122
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
123 124 125
    return out


S
ShenLiang 已提交
126
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
127
    """
128 129
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
130
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
131

S
ShenLiang 已提交
132 133
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
134 135 136 137 138

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
139 140
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
141 142 143 144 145 146 147 148
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

149 150
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
151
      After the matrix multiply, the prepended dimension is removed.
152 153

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
154 155
      the matrix-vector product is obtained.

156 157 158 159 160 161 162 163 164
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
165
      out will be a (j, k, n, p) tensor.
166 167

    Args:
S
ShenLiang 已提交
168 169
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
170 171 172 173 174 175
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
176
        Tensor: The output Tensor.
177 178 179

    Examples:

C
Chen Long 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
218 219

    """
220
    if in_dygraph_mode():
221
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
222 223 224

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
225
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
226 227
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

228
    attrs = {
S
ShenLiang 已提交
229 230
        'trans_x': transpose_x,
        'trans_y': transpose_y,
231 232 233 234 235
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
236
            check_variable_and_dtype(
237 238 239
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
240 241 242

    __check_input(x, y)

S
ShenLiang 已提交
243
    helper = LayerHelper('matmul_v2', **locals())
244
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
245 246 247 248 249 250 251
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
252
    return out
Z
Zhang Ting 已提交
253 254


myq406450149's avatar
myq406450149 已提交
255
def norm(x, p='fro', axis=None, keepdim=False, name=None):
256
    """
S
swtkiwi 已提交
257

258 259 260
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

261
    Note:
262 263 264 265 266
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

267
    Args:
myq406450149's avatar
myq406450149 已提交
268
        x (Tensor): The input tensor could be N-D tensor, and the input data
269
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
270
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
271
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
272
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
273 274
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
275
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
276
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
277
            Default value is `None`.
278 279 280 281 282 283 284 285
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
286
        Tensor: results of norm operation on the specified axis of input tensor,
287
        it's data type is the same as input's Tensor.
288

289 290
    Examples:
        .. code-block:: python
291

292
            import paddle
293 294 295 296 297 298 299 300 301
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
302

303
            # compute frobenius norm along last two dimensions.
304
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
305 306
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
307

308
            # compute 2-order vector norm along last dimension.
309
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
310 311 312
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
313 314

            # compute 2-order  norm along [0,1] dimension.
315
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
316 317
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
318 319

            # compute inf-order  norm
320 321 322 323 324 325 326 327 328
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
329 330

            # compute -inf-order  norm
331 332 333 334 335 336 337 338 339
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
340 341
    """

myq406450149's avatar
myq406450149 已提交
342
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
343 344 345 346 347 348 349 350 351 352 353
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
354 355 356

        if in_dygraph_mode():
            if dim is None:
357 358
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
359
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
360
            if dim is None:
361 362 363 364
                return _legacy_C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                                    'reduce_all', True)
            return _legacy_C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim',
                                                keepdim, 'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
365 366
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
367 368 369 370 371
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
372 373
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
374

375 376 377 378
        helper.append_op(type='frobenius_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
379 380 381 382 383 384
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
385
                    asvector=False,
386 387 388 389 390 391 392 393 394
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
395 396
        if in_dygraph_mode():
            if axis is None: axis = -1
397
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
398 399

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
400
            if axis is None: axis = -1
401 402 403
            return _legacy_C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                        'keepdim', keepdim, 'asvector',
                                        asvector)
404

405 406 407 408
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
409 410 411
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

412 413 414 415
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
416
            'asvector': asvector,
417 418 419
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
420 421
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
422

423 424 425 426
        helper.append_op(type='p_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
427 428
        return out

myq406450149's avatar
myq406450149 已提交
429 430 431 432 433 434
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
435
        if in_dygraph_mode():
436
            out = _C_ops.abs(input)
437 438 439 440 441
            reduce_all = True if axis == None or axis == [] or asvector == True else False
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
442
                return _C_ops.max(out, axis, keepdim)
443
            else:
444
                return _C_ops.min(out, axis, keepdim)
445

O
OccupyMars2025 已提交
446
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
447 448 449 450 451 452 453 454 455
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

456
        reduce_type = 'reduce_max' if porder == np.float64(
myq406450149's avatar
myq406450149 已提交
457
            'inf') else 'reduce_min'
458 459 460 461 462 463 464 465
        helper.append_op(type=reduce_type,
                         inputs={'X': out},
                         outputs={'Out': reduce_out},
                         attrs={
                             'dim': axis,
                             'keep_dim': keepdim,
                             'reduce_all': reduce_all
                         })
myq406450149's avatar
myq406450149 已提交
466 467 468 469

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
470 471 472 473
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
474
        if in_dygraph_mode():
475 476 477 478
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
            out = _C_ops.pow(sum_out, float(1. / porder))
479 480
            return out

myq406450149's avatar
myq406450149 已提交
481 482 483 484 485
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
486 487 488
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
myq406450149's avatar
myq406450149 已提交
489 490 491
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

492 493 494 495
        block.append_op(type='pow',
                        inputs={'X': abs_out},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
myq406450149's avatar
myq406450149 已提交
496 497
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
498 499 500 501 502 503 504 505 506 507 508 509
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': True if axis is None else False
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
myq406450149's avatar
myq406450149 已提交
510 511
        return out

512 513 514
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
515
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
516 517 518 519
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
520 521 522 523 524 525
            return vector_norm(x,
                               porder=p,
                               axis=axis,
                               keepdim=keepdim,
                               asvector=True,
                               name=name)
526
        else:
527 528 529
            raise ValueError(
                "only valid p type is string or float, found {}".format(
                    type(p)))
530

myq406450149's avatar
myq406450149 已提交
531 532
    if isinstance(axis, tuple):
        axis = list(axis)
533 534 535 536 537
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
538 539
        if isinstance(p, str):
            if p == "fro":
540 541 542 543 544 545
                return vector_norm(x,
                                   porder=2,
                                   axis=axis,
                                   keepdim=keepdim,
                                   asvector=False,
                                   name=name)
myq406450149's avatar
myq406450149 已提交
546 547 548 549 550

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
551 552 553 554 555 556
            return vector_norm(x,
                               axis=axis,
                               porder=p,
                               keepdim=keepdim,
                               asvector=False,
                               name=name)
557 558 559 560 561 562 563
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
564 565 566
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
567 568
        elif p == 0:
            raise ValueError(
569 570
                "just suport axis type int or list (length of list <=1) if p = 0, found {}"
                .format(axis))
571
        else:
572 573 574 575 576
            return p_matrix_norm(x,
                                 porder=p,
                                 axis=axis,
                                 keepdim=keepdim,
                                 name=name)
577 578 579 580 581 582
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


583
def dist(x, y, p=2, name=None):
584
    r"""
S
swtkiwi 已提交
585

Z
Zhang Ting 已提交
586
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
587 588
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
613 614 615 616 617 618 619

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
620
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
621 622 623 624 625

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
626
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
627 628 629 630 631 632 633 634 635 636 637 638

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
639 640
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
641 642 643
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
644
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
645 646 647 648 649 650

    Examples:
        .. code-block:: python

            import paddle

651 652
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
653 654
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
655

656 657
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
658

659 660
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
661

662 663
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
664
    """
H
hong 已提交
665
    if in_dygraph_mode():
666
        return _C_ops.dist(x, y, p)
H
hong 已提交
667

Z
Zhang Ting 已提交
668 669 670 671 672 673 674 675 676
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
677 678 679 680
    helper.append_op(type='dist',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
Z
Zhang Ting 已提交
681
    return out
L
liuwei1031 已提交
682 683


684 685 686 687 688 689
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
690 691
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
746
            # a.numpy()
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

781 782 783 784 785 786 787 788 789 790 791 792 793 794
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
            sum_out = _legacy_C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                               keepdim, 'reduce_all',
                                               reduce_all)
795
            if porder == 1 or porder == np.inf:
796 797 798
                return _legacy_C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
799
            if porder == -1 or porder == -np.inf:
800 801 802
                return _legacy_C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
803 804 805 806 807 808 809 810 811 812 813 814 815 816
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            sum_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            block.append_op(type='abs',
                            inputs={'X': input},
                            outputs={'Out': abs_out})
            block.append_op(type='reduce_sum',
                            inputs={'X': abs_out},
                            outputs={'Out': sum_out},
817
                            attrs={
818
                                'dim': axis,
819 820 821
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
            if porder == 1 or porder == np.inf:
                block.append_op(type='reduce_max',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            if porder == -1 or porder == -np.inf:
                block.append_op(type='reduce_min',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            return out
841 842 843 844 845 846 847 848 849

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

850
        if in_dygraph_mode():
851
            pow_out = _C_ops.pow(input, porder)
852 853
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
854
            return _C_ops.pow(sum_out_2, float(1. / porder))
855
        elif paddle.in_dynamic_mode():
856 857 858 859 860 861 862 863
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
            sum_out_1 = _legacy_C_ops.reduce_sum(pow_out, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            sum_out_2 = _legacy_C_ops.reduce_sum(sum_out_1, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1. / porder))
864 865 866 867 868 869 870 871 872 873

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
        block.append_op(type='pow',
                        inputs={'X': input},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out_1},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_sum',
                        inputs={'X': sum_out_1},
                        outputs={'Out': sum_out_2},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out_2},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
898 899 900 901 902 903 904 905 906 907 908 909 910
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

911
        if _non_static_mode():
912
            if porder == "nuc":
913
                if in_dygraph_mode():
914
                    return _C_ops.sum(s, axis, None, keepdim)
915
                else:
916 917 918
                    return _legacy_C_ops.reduce_sum(s, 'dim', axis, 'keepdim',
                                                    keepdim, 'reduce_all',
                                                    reduce_all)
919 920 921 922
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
923
                    return _C_ops.divide(max_out, min_out)
924
                if porder == -2:
925
                    return _C_ops.divide(min_out, max_out)
926 927 928 929 930 931 932 933 934 935 936 937 938 939

            else:
                max_out = _legacy_C_ops.reduce_max(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                min_out = _legacy_C_ops.reduce_min(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False)
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False)
940 941 942 943 944

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
945 946 947 948 949 950 951 952
            block.append_op(type='reduce_sum',
                            inputs={'X': s},
                            outputs={'Out': out},
                            attrs={
                                'dim': axis,
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
953 954 955 956 957
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        block.append_op(type='reduce_max',
                        inputs={'X': s},
                        outputs={'Out': max_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_min',
                        inputs={'X': s},
                        outputs={'Out': min_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
974
        if porder == 2:
975 976 977 978 979 980 981 982 983 984
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': max_out,
                                'Y': min_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
985 986
            return out
        if porder == -2:
987 988 989 990 991 992 993 994 995 996
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': min_out,
                                'Y': max_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
997 998 999
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1000
        if paddle.in_dynamic_mode():
1001 1002 1003 1004 1005
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1006 1007 1008
        raise ValueError(
            "input should be a matrix or batches of matrices, " +
            "but the dimention of received input is {}".format(len(x_shape)))
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1022 1023
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
                    x_inv, porder=p, axis=[-2])
1024
            if p in (np.inf, -np.inf):
1025 1026
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
                    x_inv, porder=p, axis=[-1])
1027 1028 1029 1030 1031 1032 1033 1034 1035
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1036 1037
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) +
            "1, -1, 2, -2, inf, -inf) or none")
1038 1039


L
liuwei1031 已提交
1040 1041 1042
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1043

1044
    Note:
1045 1046
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1047 1048

    Parameters:
S
ShenLiang 已提交
1049 1050
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1051 1052
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1053
    Returns:
1054
        Tensor: the calculated result Tensor.
1055

L
liuwei1031 已提交
1056 1057 1058 1059 1060
    Examples:

    .. code-block:: python

        import paddle
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1071
        z = paddle.dot(x, y)
1072
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1073 1074

    """
1075 1076
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1077 1078
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1079

L
liuwei1031 已提交
1080
    op_type = 'dot'
1081

L
liuwei1031 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
    helper.append_op(type="dot",
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     attrs={},
                     outputs={"Out": out})
L
liuwei1031 已提交
1104
    return out
1105 1106


Z
zhiboniu 已提交
1107 1108 1109 1110 1111
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1112
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1220 1221
def t(input, name=None):
    """
1222 1223
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1224
    the paddle.transpose function which perm dimensions set 0 and 1.
1225

1226
    Args:
1227
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1228
        name(str, optional): The default value is None.  Normally there is no need for
1229 1230
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1231
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1232

1233
    Examples:
1234

1235 1236 1237
        .. code-block:: python
           :name: code-example
             import paddle
1238

1239
             # Example 1 (0-D tensor)
1240 1241
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1242

1243
             # Example 2 (1-D tensor)
1244 1245 1246
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1247 1248

             # Example 3 (2-D tensor)
1249 1250 1251 1252 1253 1254 1255 1256
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1257

1258 1259 1260 1261 1262 1263
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
1264 1265 1266 1267 1268
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1269
        out = _C_ops.transpose(input, perm)
1270 1271 1272
        return out

    if _in_legacy_dygraph():
1273 1274 1275 1276
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1277
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1278 1279 1280
        return out

    check_variable_and_dtype(
1281 1282
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
1283 1284 1285 1286 1287 1288 1289

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1290 1291 1292 1293 1294 1295 1296
        helper.append_op(type='transpose2',
                         inputs={'X': [input]},
                         outputs={
                             'Out': [out],
                             'XShape': [input_shape]
                         },
                         attrs={'axis': [1, 0]})
1297
    return out
1298 1299


W
wanghuancoder 已提交
1300
def cross(x, y, axis=9, name=None):
1301
    """
1302
    Computes the cross product between two tensors along an axis.
1303

1304 1305
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1306

1307
    Args:
1308 1309
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1310
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1311
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1312 1313

    Returns:
1314
        Tensor. A Tensor with same data type as `x`.
1315

1316 1317
    Examples:
        .. code-block:: python
1318

1319
            import paddle
1320

Z
Zhou Wei 已提交
1321 1322 1323 1324 1325 1326
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1337
    """
J
Jiabin Yang 已提交
1338
    if in_dygraph_mode():
1339
        axis = K_DEFAULT_DIM if axis is None else axis
1340
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1341 1342 1343
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1344
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1345
            else:
1346
                return _legacy_C_ops.cross(x, y)
1347
        else:
J
Jiabin Yang 已提交
1348 1349 1350 1351 1352
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1353 1354 1355 1356 1357 1358 1359
            helper.append_op(type='cross',
                             inputs={
                                 'X': x,
                                 'Y': y
                             },
                             outputs={'Out': out},
                             attrs=attrs)
J
Jiabin Yang 已提交
1360
            return out
1361 1362


1363
def cholesky(x, upper=False, name=None):
1364
    r"""
G
Guo Sheng 已提交
1365
    Computes the Cholesky decomposition of one symmetric positive-definite
1366 1367
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1368 1369 1370 1371 1372 1373
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1374
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1375 1376 1377 1378 1379
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1380 1381
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1382 1383

    Returns:
1384 1385
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1386

G
Guo Sheng 已提交
1387 1388 1389 1390 1391 1392
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1393 1394 1395
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1396
            x = paddle.to_tensor(x_data)
1397
            out = paddle.linalg.cholesky(x, upper=False)
1398
            print(out)
1399 1400 1401
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1402 1403

    """
H
hong 已提交
1404
    if in_dygraph_mode():
1405
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1406 1407

    if _in_legacy_dygraph():
1408
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1409

G
Guo Sheng 已提交
1410 1411 1412 1413
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1414 1415 1416 1417
    helper.append_op(type='cholesky',
                     inputs={'X': [x]},
                     outputs={'Out': out},
                     attrs={'upper': upper})
G
Guo Sheng 已提交
1418 1419 1420
    return out


1421 1422 1423 1424
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1425
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1426
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1427 1428

    Args:
1429 1430 1431 1432
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1433
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1434 1435
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1436
            the lower triangular of the matrix to compute.
1437 1438 1439 1440
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1458

1459
    """
1460 1461 1462 1463 1464 1465 1466
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1467 1468
            return _C_ops.matrix_rank_tol(x, tol_tensor, use_default_tol,
                                          hermitian)
1469

1470 1471 1472 1473 1474 1475
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1476
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1477 1478

    if _in_legacy_dygraph():
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1494 1495 1496
        return _legacy_C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr,
                                         'hermitian', hermitian,
                                         'use_default_tol', use_default_tol)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1519 1520 1521 1522
    helper.append_op(type='matrix_rank',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
1523 1524 1525
    return out


1526 1527 1528 1529 1530 1531 1532 1533 1534
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1535 1536
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1537 1538 1539 1540
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1541
        Tensor: The product Tensor.
1542 1543

    Examples:
S
sunzhongkai588 已提交
1544 1545 1546
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1547

S
sunzhongkai588 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1557 1558 1559 1560 1561 1562
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1563

1564
    """
Y
yaoxuefeng 已提交
1565 1566 1567 1568
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1569 1570
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1571 1572
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1573 1574
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1575 1576
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1577 1578
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1579

1580
    if in_dygraph_mode():
1581
        return _C_ops.bmm(x, y)
1582

Z
zhiboniu 已提交
1583
    if paddle.in_dynamic_mode():
1584
        return _legacy_C_ops.bmm(x, y)
1585 1586

    helper = LayerHelper('bmm', **locals())
1587 1588 1589
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1590 1591


1592
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1593
    """
1594
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1595 1596 1597
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1598
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1599
            should be float32, float64, int32, int64.
1600 1601 1602 1603
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1604 1605

    Returns:
1606
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1607

1608
    Examples:
Q
Qi Li 已提交
1609
        .. code-block:: python
1610

Q
Qi Li 已提交
1611
            import paddle
1612

1613
            inputs = paddle.to_tensor([1, 2, 1])
1614 1615
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1616
    """
H
hong 已提交
1617
    if in_dygraph_mode():
1618
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1619 1620

    if _in_legacy_dygraph():
1621 1622
        return _legacy_C_ops.histogram(input, "bins", bins, "min", min, "max",
                                       max)
Q
Qi Li 已提交
1623 1624

    helper = LayerHelper('histogram', **locals())
1625 1626 1627
    check_variable_and_dtype(input, 'X',
                             ['int32', 'int64', 'float32', 'float64'],
                             'histogram')
Q
Qi Li 已提交
1628
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1629 1630 1631 1632 1633 1634 1635 1636
    helper.append_op(type='histogram',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'bins': bins,
                         'min': min,
                         'max': max
                     })
Q
Qi Li 已提交
1637
    return out
S
smallv0221 已提交
1638 1639 1640 1641


def bincount(x, weights=None, minlength=0, name=None):
    """
1642
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1670 1671 1672
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1673
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1686 1687 1688 1689 1690 1691 1692
    helper.append_op(type='bincount',
                     inputs={
                         'X': x,
                         'Weights': weights
                     },
                     outputs={'Out': out},
                     attrs={'minlength': minlength})
S
smallv0221 已提交
1693
    return out
1694 1695 1696 1697 1698 1699 1700


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1701
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1702
            should be one of float32, float64.
F
furnace 已提交
1703
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1719 1720
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1721
            out = paddle.mv(x, vec)
1722 1723 1724
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1725
    """
J
Jiabin Yang 已提交
1726
    if in_dygraph_mode():
1727
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1728 1729
    else:
        if _in_legacy_dygraph():
1730
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1731 1732
            return out
        else:
1733

J
Jiabin Yang 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1743 1744
                        "x should be 2-dimensional. But received x's dimention: {}"
                        .format(x_shape))
J
Jiabin Yang 已提交
1745 1746
                if len(vec_shape) != 1:
                    raise ValueError(
1747 1748
                        "vec should be 1-dimensional. But received vec's dimention: {}"
                        .format(vec_shape))
J
Jiabin Yang 已提交
1749 1750 1751 1752 1753

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1754 1755 1756 1757 1758 1759
            helper.append_op(type='mv',
                             inputs={
                                 'X': x,
                                 'Vec': vec
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
1760
            return out
1761 1762


1763
def det(x, name=None):
H
huangxu96 已提交
1764 1765
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1766

H
huangxu96 已提交
1767
    Args:
1768 1769 1770 1771
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1772
    Returns:
1773
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1774

1775
    Examples:
H
huangxu96 已提交
1776 1777
        .. code-block:: python

1778
            import paddle
H
huangxu96 已提交
1779

1780
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1781

1782
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1783

1784
            print(A)
1785

1786
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1787

1788

H
huangxu96 已提交
1789
    """
C
chentianyu03 已提交
1790
    if in_dygraph_mode():
1791
        return _C_ops.det(x)
C
chentianyu03 已提交
1792 1793

    if _in_legacy_dygraph():
1794
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1812 1813 1814
    helper.append_op(type='determinant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1815 1816 1817
    return out


1818
def slogdet(x, name=None):
H
huangxu96 已提交
1819 1820 1821
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1822

H
huangxu96 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1834
    Examples:
1835
        .. code-block:: python
H
huangxu96 已提交
1836

1837
            import paddle
H
huangxu96 已提交
1838

1839
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1840

1841
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1842

1843
            print(A)
1844

1845 1846
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1847 1848

    """
1849
    if in_dygraph_mode():
1850
        return _C_ops.slogdet(x)
1851 1852

    elif paddle.in_dynamic_mode():
1853
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1871 1872 1873
    helper.append_op(type='slogdeterminant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1874 1875 1876
    return out


1877 1878
def svd(x, full_matrices=False, name=None):
    r"""
1879 1880 1881 1882 1883
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1884 1885
        X = U * diag(S) * VT

1886 1887
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1888
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1889 1890 1891 1892
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1893
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1894
            If full_matrices = False, svd op will use a economic method to store U and V.
1895
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1896
        name (str, optional): Name for the operation (optional, default is None).
1897
            For more information, please refer to :ref:`api_guide_Name`.
1898 1899

    Returns:
1900
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1901

1902 1903 1904 1905
    Examples:
        .. code-block:: python

            import paddle
1906 1907 1908

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1909
            u, s, vh = paddle.linalg.svd(x)
1910 1911 1912 1913 1914
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1915
            print (s)
1916
            #S = [8.14753743, 0.78589688]
1917
            print (vh)
1918 1919
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1920

1921
            # one can verify : U * S * VT == X
1922
            #                  U * UH == I
1923
            #                  V * VH == I
1924
    """
1925
    if in_dygraph_mode():
1926
        return _C_ops.svd(x, full_matrices)
1927
    if _in_legacy_dygraph():
1928
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
1940 1941 1942 1943 1944 1945 1946
        outputs={
            'U': u,
            'VH': vh,
            'S': s
        },
        attrs=attrs,
    )
1947 1948 1949
    return u, s, vh


1950 1951 1952
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1953

1954 1955 1956 1957 1958
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1959

1960 1961
    Specifically,

1962
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1963

1964 1965
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1966
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1967 1968 1969 1970 1971 1972

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1973
        name (str, optional): Name for the operation (optional, default is None).
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1988
            print(paddle.linalg.matrix_power(x, 2))
1989 1990 1991 1992
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1993
            print(paddle.linalg.matrix_power(x, 0))
1994 1995 1996 1997
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1998
            print(paddle.linalg.matrix_power(x, -2))
1999 2000 2001 2002
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2003
    if in_dygraph_mode():
2004
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2005 2006

    if _in_legacy_dygraph():
2007
        return _legacy_C_ops.matrix_power(x, "n", n)
2008 2009 2010 2011 2012

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2013 2014 2015 2016
    helper.append_op(type='matrix_power',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'n': n})
2017
    return out
2018 2019


2020 2021 2022 2023 2024 2025 2026
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2027 2028
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2029
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2030
            If mode = "reduced", qr op will return reduced Q and R matrices,
2031
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2032
            If mode = "complete", qr op will return complete Q and R matrices,
2033 2034 2035 2036 2037
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2038

2039
    Returns:
2040
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2041
        If mode = "r", qr will return a tensor which represents R.
2042 2043

    Examples:
2044 2045
        .. code-block:: python

2046
            import paddle
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2059 2060

            # one can verify : X = Q * R ;
2061
    """
Y
Yulong Ao 已提交
2062
    if in_dygraph_mode():
2063
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2064 2065 2066 2067 2068
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2069
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2081 2082 2083 2084 2085 2086 2087
    helper.append_op(type='qr',
                     inputs={'X': [x]},
                     outputs={
                         'Q': q,
                         'R': r
                     },
                     attrs=attrs)
2088 2089 2090 2091 2092 2093
    if mode == "r":
        return r
    else:
        return q, r


2094 2095
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2096
    Computes the LU factorization of an N-D(N>=2) matrix x.
2097

2098
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2099 2100 2101 2102
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2103 2104 2105 2106 2107 2108

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2120

2121
    Returns:
2122
        factorization (Tensor), LU matrix, the factorization of input X.
2123

2124 2125 2126
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2127

2128 2129 2130
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2131

2132 2133

    Examples:
2134 2135
        .. code-block:: python

2136
            import paddle
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2152

2153 2154 2155 2156 2157 2158
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2159
            # [1., 0., 0.]]),
2160 2161 2162 2163
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2164
            # [0.60000000, 0.50000000]]),
2165 2166 2167 2168 2169
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2170 2171

            # one can verify : X = P @ L @ U ;
2172
    """
L
Lin Manhui 已提交
2173 2174

    if in_dygraph_mode():
2175
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2176
    elif paddle.in_dynamic_mode():
2177
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
        helper.append_op(type='lu',
                         inputs={'X': x},
                         outputs={
                             'Out': lu,
                             'Pivots': p,
                             'Infos': info
                         },
                         attrs=attrs)
2194 2195 2196 2197 2198 2199 2200 2201
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2202
    Unpack L U and P to single matrix tensor .
2203 2204 2205
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2206 2207 2208 2209 2210

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2224

2225
    Returns:
2226
        P (Tensor), Permutation matrix P of lu factorization.
2227

2228
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2229

2230
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2231

2232 2233

    Examples:
2234 2235
        .. code-block:: python

2236
            import paddle
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2252

2253 2254 2255 2256 2257 2258
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2259
            # [1., 0., 0.]]),
2260 2261 2262 2263
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2264
            # [0.60000000, 0.50000000]]),
2265 2266 2267 2268 2269
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2270
            # one can verify : X = P @ L @ U ;
2271 2272
    """

2273
    if in_dygraph_mode():
2274
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2275 2276
        return P, L, U

Z
zhiboniu 已提交
2277
    if paddle.in_dynamic_mode():
2278 2279
        P, L, U = _legacy_C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                          'unpack_pivots', unpack_pivots)
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    helper.append_op(type='lu_unpack',
                     inputs={
                         'X': x,
                         'Pivots': y
                     },
                     outputs={
                         'Pmat': p,
                         'L': l,
                         'U': u
                     },
                     attrs=attrs)
2302 2303 2304
    return p, l, u


L
Lijunhui 已提交
2305 2306
def eig(x, name=None):
    """
2307
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2308

2309 2310 2311 2312 2313 2314
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2315 2316 2317 2318

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2319
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2333
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2334
                               [9.956216,  8.749598,  6.066444 ],
2335
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2336
            w, v = paddle.linalg.eig(x)
2337
            print(v)
L
Lijunhui 已提交
2338 2339 2340 2341 2342 2343 2344 2345
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2346
            print(w)
L
Lijunhui 已提交
2347 2348 2349 2350
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2351
    if in_dygraph_mode():
2352
        return _C_ops.eig(x)
2353
    elif paddle.in_dynamic_mode():
2354
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2355 2356
        return w, v

2357 2358 2359
    check_variable_and_dtype(x, 'X',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eig')
L
Lijunhui 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2372 2373 2374
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2375 2376 2377

    Warning:
        The gradient kernel of this operator does not yet developed.
2378 2379 2380 2381
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2382
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2383
            Its data type should be float32, float64, complex64, or complex128.
2384
        name (str, optional): Name for the operation (optional, default is None).
2385
            For more information, please refer to :ref:`api_guide_Name`.
2386

2387
    Returns:
2388 2389
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2390 2391 2392 2393 2394

    Examples:
        .. code-block:: python

            import paddle
2395

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2409 2410
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvals')
2411 2412 2413 2414

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2415 2416
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}"
            .format(len(x_shape), x_shape))
2417 2418 2419

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2420 2421
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}"
            .format(x_shape))
2422

R
Ruibiao Chen 已提交
2423
    if in_dygraph_mode():
2424
        return _C_ops.eigvals(x)
2425 2426
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2427 2428 2429 2430 2431 2432 2433

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2434 2435 2436 2437
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2438
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2475 2476
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2477
        out = paddle.linalg.multi_dot([A, B])
2478
        print(out.shape)
2479 2480 2481
        # [3, 5]

        # A * B * C
2482 2483 2484
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2485
        out = paddle.linalg.multi_dot([A, B, C])
2486
        print(out.shape)
2487 2488 2489
        # [10, 7]

    """
2490
    if _in_legacy_dygraph():
2491
        return _legacy_C_ops.multi_dot(x)
2492
    if in_dygraph_mode():
2493
        return _C_ops.multi_dot(x)
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2508 2509 2510 2511


def eigh(x, UPLO='L', name=None):
    """
2512
    Compute the eigenvalues and eigenvectors of a
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2524 2525 2526 2527
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2528 2529 2530 2531 2532 2533

    Examples:
        .. code-block:: python

            import paddle

2534
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2535
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2536 2537 2538 2539 2540 2541 2542
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2543
    if in_dygraph_mode():
2544
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2545 2546

    if _in_legacy_dygraph():
2547
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2548 2549 2550 2551 2552 2553 2554 2555 2556

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2557 2558
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
2559
        if UPLO != 'L' and UPLO != 'U':
2560 2561 2562 2563 2564 2565
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2566 2567 2568
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigh')
2569 2570 2571 2572

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2573 2574 2575 2576 2577 2578 2579
    helper.append_op(type='eigh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={'UPLO': UPLO})
2580
    return out_value, out_vector
A
andyjpaddle 已提交
2581 2582 2583 2584


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2585
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2596

A
andyjpaddle 已提交
2597 2598 2599
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2600 2601 2602
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2603 2604 2605 2606
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2607
        rcond(Tensor, optional): the tolerance value to determine
2608
            when is a singular value zero. Default:1e-15.
2609 2610

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2611
            if complex or symmetric if real. Default: False.
2612 2613

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2614
            the layer will be named automatically.
2615

A
andyjpaddle 已提交
2616
    Returns:
2617
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2618
        pseudo inverse of x. Its shape should be (*, n, m).
2619

A
andyjpaddle 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2646 2647 2648
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2649 2650
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2651 2652 2653 2654
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2655

2656 2657 2658 2659 2660 2661
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2662
            st = _C_ops.unsqueeze(singular, [-2])
2663 2664 2665

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2666
            v = _C_ops.transpose(vt, perm)
2667 2668

            out_1 = v * st
2669
            out_2 = _C_ops.matmul(out_1, u, False, True)
2670 2671 2672
            return out_2
        else:
            # combine eigh and matmul op
2673
            s, u = _C_ops.eigh(x, 'UPLO')
2674
            s_abs = paddle.abs(s)
2675
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2687
            st = _C_ops.unsqueeze(singular, [-2])
2688 2689

            out_1 = u * st
2690 2691
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2692 2693 2694
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2695 2696
        if not hermitian:
            # combine svd and matmul op
2697 2698
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _legacy_C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2699 2700 2701 2702 2703 2704 2705
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2706 2707 2708 2709 2710
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2711
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2712 2713 2714

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2715
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2716 2717

            out_1 = v * st
2718
            if in_dygraph_mode():
2719
                out_2 = _C_ops.matmul(out_1, u, False, True)
2720
            else:
2721 2722
                out_2 = _legacy_C_ops.matmul_v2(out_1, u, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2723 2724 2725
            return out_2
        else:
            # combine eigh and matmul op
2726
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2727
            s_abs = paddle.abs(s)
2728
            max_singular_val = _legacy_C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2729 2730 2731 2732 2733 2734 2735
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2736 2737 2738 2739 2740
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2741
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2742 2743

            out_1 = u * st
2744
            u_conj = _legacy_C_ops.conj(u)
2745
            if in_dygraph_mode():
2746
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2747
            else:
2748 2749
                out_2 = _legacy_C_ops.matmul_v2(out_1, u_conj, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2763 2764 2765 2766 2767 2768 2769
                outputs={
                    'U': u,
                    'VH': vt,
                    'S': s
                },
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2770 2771

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2772 2773 2774 2775 2776 2777 2778 2779
            helper.append_op(type='reduce_max',
                             inputs={'X': s},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2780

2781
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2782 2783
            cutoff = rcond * max_singular_val
            y = float('inf')
2784
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2785 2786

            condition = s > cutoff
2787 2788 2789 2790 2791
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2792 2793 2794

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2795 2796 2797 2798 2799 2800 2801
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2802 2803 2804 2805 2806

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2807 2808 2809 2810 2811 2812 2813
            helper.append_op(type='transpose2',
                             inputs={'X': [vt]},
                             outputs={
                                 'Out': [v],
                                 'XShape': [v_shape]
                             },
                             attrs={'axis': perm})
A
andyjpaddle 已提交
2814 2815

            out_1 = helper.create_variable_for_type_inference(dtype)
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': v,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2826 2827 2828 2829 2830
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2831 2832 2833 2834
                inputs={
                    'X': out_1,
                    'Y': u
                },
A
andyjpaddle 已提交
2835
                outputs={'Out': out_2},
2836 2837 2838 2839 2840
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2841 2842 2843 2844 2845
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2846 2847
                x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'],
                'pinv')
A
andyjpaddle 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2858 2859 2860 2861 2862 2863 2864
            helper.append_op(type='eigh',
                             inputs={'X': x},
                             outputs={
                                 'Eigenvalues': s,
                                 'Eigenvectors': u
                             },
                             attrs={'UPLO': 'L'})
A
andyjpaddle 已提交
2865
            s_abs = helper.create_variable_for_type_inference(s_type)
2866 2867 2868
            helper.append_op(type='abs',
                             inputs={'X': s},
                             outputs={'Out': s_abs})
A
andyjpaddle 已提交
2869
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2870 2871 2872 2873 2874 2875 2876 2877
            helper.append_op(type='reduce_max',
                             inputs={'X': s_abs},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2878

2879
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2880 2881
            cutoff = rcond * max_singular_val
            y = float('inf')
2882
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2883 2884

            condition = s_abs > cutoff
2885 2886 2887 2888 2889
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2890 2891 2892

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2893 2894 2895 2896 2897 2898 2899
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2900 2901

            out_1 = helper.create_variable_for_type_inference(dtype)
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': u,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2912 2913 2914
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2915 2916 2917
            helper.append_op(type='conj',
                             inputs={'X': u},
                             outputs={'Out': [u_conj]})
A
andyjpaddle 已提交
2918 2919 2920 2921

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2922 2923 2924 2925
                inputs={
                    'X': out_1,
                    'Y': u_conj
                },
A
andyjpaddle 已提交
2926
                outputs={'Out': out_2},
2927 2928 2929 2930 2931
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2932
            return out_2
W
Weilong Wu 已提交
2933 2934 2935 2936 2937 2938 2939


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2940

W
Weilong Wu 已提交
2941 2942
    .. math::
        Out = X^-1 * Y
2943 2944

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2945

W
Weilong Wu 已提交
2946 2947 2948 2949 2950
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2951
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2952
            For more information, please refer to :ref:`api_guide_Name`.
2953

W
Weilong Wu 已提交
2954
    Returns:
2955
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2956
        Its data type should be the same as that of `x`.
2957

W
Weilong Wu 已提交
2958
    Examples:
2959

2960
        .. code-block:: python
2961

2962 2963 2964
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2965

2966 2967 2968 2969 2970
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2971

2972 2973
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2974
    """
2975
    if in_dygraph_mode():
2976
        return _C_ops.solve(x, y)
2977 2978

    if _in_legacy_dygraph():
2979
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
2980 2981 2982 2983 2984 2985 2986

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2987 2988 2989 2990 2991 2992
    helper.append_op(type="solve",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     outputs={"Out": out})
W
Weilong Wu 已提交
2993
    return out
2994 2995


2996 2997 2998 2999 3000 3001 3002
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
3003 3004
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
3005

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3018 3019 3020 3021

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3022
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3023
            zero or more batch dimensions. Its data type should be float32 or float64.
3024
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3025 3026
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3027
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3028 3029 3030 3031 3032 3033 3034 3035
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3036
        .. code-block:: python
3037

3038 3039 3040 3041
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3042

3043 3044 3045 3046 3047 3048
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3049

3050 3051
            print(out)
            # [7, -2, -5]
3052
    """
H
hong 已提交
3053
    if in_dygraph_mode():
3054
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3055

Z
zhiboniu 已提交
3056
    if paddle.in_dynamic_mode():
3057 3058 3059
        return _legacy_C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                              transpose, 'unitriangular',
                                              unitriangular)
3060 3061 3062 3063 3064 3065 3066

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
    helper.append_op(type='triangular_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'upper': upper,
                         'transpose': transpose,
                         'unitriangular': unitriangular
                     })
3078 3079 3080
    return out


Z
zhiboniu 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3091
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3101
        .. code-block:: python
Z
zhiboniu 已提交
3102

3103
            import paddle
Z
zhiboniu 已提交
3104

3105 3106 3107 3108 3109
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3110

3111 3112
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3113
    """
H
hong 已提交
3114
    if in_dygraph_mode():
3115
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3116 3117

    if _in_legacy_dygraph():
3118
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3119 3120 3121 3122 3123 3124

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3125 3126 3127 3128 3129 3130 3131
    helper.append_op(type='cholesky_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={'upper': upper})
Z
zhiboniu 已提交
3132 3133 3134
    return out


3135 3136
def eigvalsh(x, UPLO='L', name=None):
    """
3137
    Computes the eigenvalues of a
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3155
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3156 3157
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3158 3159
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3160
    """
3161
    if in_dygraph_mode():
3162
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3163 3164 3165
        return values

    elif paddle.in_dynamic_mode():
3166
        is_test = x.stop_gradient
3167
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3178 3179
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
3180
        if UPLO != 'L' and UPLO != 'U':
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
    helper.append_op(type='eigvalsh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={
                         'UPLO': UPLO,
                         'is_test': is_test
                     })
3205
    return out_value
3206 3207


3208 3209 3210 3211 3212 3213 3214 3215
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3216
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3217
            should be one of float32, float64.
3218 3219
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3220
            machine precision of x_dtype.
3221 3222 3223
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3224
            for CUDA inputs.
3225
        name(str, optional): The default value is None. Normally there is no need for user to set
3226 3227 3228
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3229 3230 3231 3232 3233 3234 3235
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3268 3269 3270
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3271 3272
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}"
                .format(driver))
3273 3274 3275 3276
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3277 3278
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}"
                .format(driver))
3279 3280 3281 3282
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3296
    if _non_static_mode():
3297
        if in_dygraph_mode():
3298
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3299
                x, y, rcond, driver)
3300
        else:
3301
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3302
                x, y, 'rcond', rcond, 'driver', driver)
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3313 3314 3315 3316 3317 3318
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
    check_variable_and_dtype(y, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
3319 3320 3321 3322 3323 3324

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3325 3326 3327 3328 3329 3330 3331
    helper.append_op(type='lstsq',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Solution': solution,
3332
                         'Residuals': residuals,
3333 3334 3335 3336 3337 3338 3339
                         'Rank': rank,
                         'SingularValues': singular_values
                     },
                     attrs={
                         'rcond': rcond,
                         'driver': driver
                     })
3340 3341 3342 3343 3344 3345 3346 3347

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3348 3349 3350 3351


def corrcoef(x, rowvar=True, name=None):
    """
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3376

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
    if (c.ndim == 0):
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3410 3411
        return paddle.complex(paddle.clip(c.real(), -1, 1),
                              paddle.clip(c.imag(), -1, 1))
3412 3413 3414 3415
    else:
        c = paddle.clip(c, -1, 1)

    return c