Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
cdbfeff4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cdbfeff4
编写于
8月 03, 2022
作者:
W
wuyefeilin
提交者:
GitHub
8月 03, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] Move eigvalsh op to phi (#44559)
* mv eigvalsh op
上级
15ce2c1b
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
406 addition
and
158 deletion
+406
-158
paddle/fluid/operators/eigvalsh_op.cc
paddle/fluid/operators/eigvalsh_op.cc
+17
-75
paddle/fluid/operators/eigvalsh_op.h
paddle/fluid/operators/eigvalsh_op.h
+0
-80
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+9
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+12
-0
paddle/phi/infermeta/backward.cc
paddle/phi/infermeta/backward.cc
+12
-0
paddle/phi/infermeta/backward.h
paddle/phi/infermeta/backward.h
+6
-0
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+40
-0
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+6
-0
paddle/phi/kernels/cpu/eigvalsh_grad_kernel.cc
paddle/phi/kernels/cpu/eigvalsh_grad_kernel.cc
+29
-0
paddle/phi/kernels/cpu/eigvalsh_kernel.cc
paddle/phi/kernels/cpu/eigvalsh_kernel.cc
+29
-0
paddle/phi/kernels/eigvalsh_grad_kernel.h
paddle/phi/kernels/eigvalsh_grad_kernel.h
+29
-0
paddle/phi/kernels/eigvalsh_kernel.h
paddle/phi/kernels/eigvalsh_kernel.h
+29
-0
paddle/phi/kernels/gpu/eigvalsh_grad_kernel.cu
paddle/phi/kernels/gpu/eigvalsh_grad_kernel.cu
+29
-0
paddle/phi/kernels/gpu/eigvalsh_kernel.cu
paddle/phi/kernels/gpu/eigvalsh_kernel.cu
+29
-0
paddle/phi/kernels/impl/eigvalsh_grad_kernel_impl.h
paddle/phi/kernels/impl/eigvalsh_grad_kernel_impl.h
+51
-0
paddle/phi/kernels/impl/eigvalsh_kernel_impl.h
paddle/phi/kernels/impl/eigvalsh_kernel_impl.h
+36
-0
paddle/phi/ops/compat/eigvalsh_sig.cc
paddle/phi/ops/compat/eigvalsh_sig.cc
+34
-0
python/paddle/fluid/tests/unittests/test_eigvalsh_op.py
python/paddle/fluid/tests/unittests/test_eigvalsh_op.py
+4
-2
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+5
-1
未找到文件。
paddle/fluid/operators/eigvalsh_op.cc
浏览文件 @
cdbfeff4
...
...
@@ -12,7 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/eigvalsh_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,43 +26,6 @@ using framework::Tensor;
class
EigvalshOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"Eigvalsh"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Eigenvalues"
),
"Output"
,
"Eigenvalues"
,
"Eigvalsh"
);
auto
input_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
rank
=
input_dim
.
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
platform
::
errors
::
InvalidArgument
(
"The Input(X) should have at least 2 dimensions."
"But received a %d dimension tensor."
,
rank
));
PADDLE_ENFORCE_EQ
(
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
],
platform
::
errors
::
InvalidArgument
(
"Eigvalsh op is designed for square matrix, consequently"
"inner-most 2 dimensions of Input(X) should be symmetric."
"But received X's shape[-2] = %d and shape[-1] = %d."
,
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
]));
std
::
vector
<
int64_t
>
values_dim
;
for
(
auto
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
values_dim
.
emplace_back
(
input_dim
[
i
]);
}
ctx
->
SetOutputDim
(
"Eigenvalues"
,
phi
::
make_ddim
(
values_dim
));
if
(
ctx
->
HasOutput
(
"Eigenvectors"
))
{
ctx
->
SetOutputDim
(
"Eigenvectors"
,
input_dim
);
}
}
};
class
EigvalshOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -100,20 +67,6 @@ class EigvalshGradOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Eigenvectors"
),
"Input"
,
"Eigenvectors"
,
"EigvalshGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Eigenvalues"
)),
"Input"
,
"Eigenvalues@GRAD"
,
"EigvalshGrad"
);
auto
dims
=
ctx
->
GetInputDim
(
"Eigenvectors"
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -144,30 +97,19 @@ class EigvalshGradOpMaker : public framework::SingleGradOpMaker<T> {
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
eigvalsh
,
EigvalshInferShapeFunctor
,
PD_INFER_META
(
phi
::
EigvalshInferMeta
));
DECLARE_INFER_SHAPE_FUNCTOR
(
eigvalsh_grad
,
EigvalshGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
EigvalshGradInferMeta
));
REGISTER_OPERATOR
(
eigvalsh
,
ops
::
EigvalshOp
,
ops
::
EigvalshOpMaker
,
ops
::
EigvalshGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
EigvalshGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
eigvalsh_grad
,
ops
::
EigvalshGradOp
);
REGISTER_OP_CPU_KERNEL
(
eigvalsh
,
ops
::
EigvalshKernel
<
phi
::
CPUContext
,
float
,
float
>
,
ops
::
EigvalshKernel
<
phi
::
CPUContext
,
double
,
double
>
,
ops
::
EigvalshKernel
<
phi
::
CPUContext
,
float
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EigvalshKernel
<
phi
::
CPUContext
,
double
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CPU_KERNEL
(
eigvalsh_grad
,
ops
::
EigvalshGradKernel
<
phi
::
CPUContext
,
float
,
float
>
,
ops
::
EigvalshGradKernel
<
phi
::
CPUContext
,
double
,
double
>
,
ops
::
EigvalshGradKernel
<
phi
::
CPUContext
,
float
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EigvalshGradKernel
<
phi
::
CPUContext
,
double
,
paddle
::
platform
::
complex
<
double
>>
);
ops
::
EigvalshGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
EigvalshInferShapeFunctor
);
REGISTER_OPERATOR
(
eigvalsh_grad
,
ops
::
EigvalshGradOp
,
EigvalshGradInferShapeFunctor
);
paddle/fluid/operators/eigvalsh_op.h
已删除
100644 → 0
浏览文件 @
15ce2c1b
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/eigen_values_vectors.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
ValueType
,
typename
T
>
class
EigvalshKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
output_w
=
ctx
.
Output
<
Tensor
>
(
"Eigenvalues"
);
std
::
string
lower
=
ctx
.
Attr
<
std
::
string
>
(
"UPLO"
);
bool
is_lower
=
(
lower
==
"L"
);
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
math
::
MatrixEighFunctor
<
DeviceContext
,
T
>
functor
;
if
(
is_test
)
{
functor
(
ctx
,
*
input
,
output_w
,
nullptr
,
is_lower
,
false
);
}
else
{
auto
output_v
=
ctx
.
Output
<
Tensor
>
(
"Eigenvectors"
);
functor
(
ctx
,
*
input
,
output_w
,
output_v
,
is_lower
,
true
);
}
}
};
template
<
typename
DeviceContext
,
typename
ValueType
,
typename
T
>
class
EigvalshGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
x_grad
=
*
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
&
output_v
=
*
ctx
.
Input
<
Tensor
>
(
"Eigenvectors"
);
auto
&
output_w_grad
=
*
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Eigenvalues"
));
auto
dito
=
math
::
DeviceIndependenceTensorOperations
<
DeviceContext
,
T
,
ValueType
>
(
ctx
);
auto
tV
=
dito
.
Transpose
(
dito
.
Conj
(
output_v
));
// compute elementwise multiply of output_v and output_w_grad
x_grad
.
mutable_data
<
T
>
(
output_v
.
dims
(),
ctx
.
GetPlace
());
auto
output_v_vector
=
EigenVector
<
T
>::
Flatten
(
output_v
);
auto
output_w_grad_vector
=
EigenVector
<
ValueType
>::
Flatten
(
output_w_grad
);
auto
result_vector
=
EigenVector
<
T
>::
Flatten
(
x_grad
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
std
::
vector
<
int
>
broadcast_factor
;
broadcast_factor
.
push_back
(
output_v
.
dims
().
at
(
output_v
.
dims
().
size
()
-
1
));
result_vector
.
device
(
place
)
=
output_v_vector
*
output_w_grad_vector
.
broadcast
(
broadcast_factor
);
x_grad
=
dito
.
Matmul
(
x_grad
,
tV
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
cdbfeff4
...
...
@@ -682,6 +682,15 @@
kernel
:
func
:
eigvals
-
api
:
eigvalsh
args
:
(Tensor x, str uplo, bool is_test)
output
:
Tensor(eigenvalues), Tensor(eigenvectors)
infer_meta
:
func
:
EigvalshInferMeta
kernel
:
func
:
eigvalsh
backward
:
eigvalsh_grad
-
api
:
einsum
args
:
(Tensor[] x, str equation)
output
:
Tensor, Tensor[]{x.size()}, Tensor[]{x.size()}
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
cdbfeff4
...
...
@@ -667,6 +667,18 @@
data_transform
:
skip_transform
:
out_w, out_w_grad
-
backward_api
:
eigvalsh_grad
forward
:
eigvalsh (Tensor x, str uplo, bool is_test) -> Tensor(eigenvalues), Tensor(eigenvectors)
args
:
(Tensor eigenvectors, Tensor eigenvalues_grad, str uplo, bool is_test)
output
:
Tensor(x_grad)
infer_meta
:
func
:
EigvalshGradInferMeta
kernel
:
func
:
eigvalsh_grad
data_type
:
eigenvectors
data_transform
:
skip_transform
:
eigenvalues_grad
-
backward_api
:
einsum_grad
forward
:
einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape)
args
:
(Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation)
...
...
paddle/phi/infermeta/backward.cc
浏览文件 @
cdbfeff4
...
...
@@ -263,6 +263,18 @@ void EigGradInferMeta(const MetaTensor& out_w,
}
}
void
EigvalshGradInferMeta
(
const
MetaTensor
&
out_v
,
const
MetaTensor
&
out_w_grad
,
const
std
::
string
&
uplo
,
bool
is_test
,
MetaTensor
*
x_grad
)
{
auto
dims
=
out_v
.
dims
();
if
(
x_grad
!=
nullptr
)
{
x_grad
->
set_dims
(
dims
);
x_grad
->
set_dtype
(
out_v
.
dtype
());
}
}
void
GatherNdGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
out_grad
,
...
...
paddle/phi/infermeta/backward.h
浏览文件 @
cdbfeff4
...
...
@@ -126,6 +126,12 @@ void EigGradInferMeta(const MetaTensor& out_w,
const
MetaTensor
&
dout_v
,
MetaTensor
*
dx
);
void
EigvalshGradInferMeta
(
const
MetaTensor
&
out_v
,
const
MetaTensor
&
out_w_grad
,
const
std
::
string
&
uplo
,
bool
is_test
,
MetaTensor
*
x_grad
);
void
GatherNdGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
out_grad
,
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
cdbfeff4
...
...
@@ -622,6 +622,46 @@ void EigvalsInferMeta(const MetaTensor& x, MetaTensor* out, MetaConfig config) {
out
->
set_dtype
(
out_dtype
);
}
void
EigvalshInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
bool
is_test
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
)
{
auto
input_dim
=
x
.
dims
();
auto
rank
=
input_dim
.
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
errors
::
InvalidArgument
(
"The Input(X) should have at least 2 dimensions."
"But received a %d dimension tensor."
,
rank
));
PADDLE_ENFORCE_EQ
(
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
],
errors
::
InvalidArgument
(
"Eigvalsh op is designed for square matrix, consequently"
"inner-most 2 dimensions of Input(X) should be symmetric."
"But received X's shape[-2] = %d and shape[-1] = %d."
,
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
]));
std
::
vector
<
int64_t
>
values_dim
;
for
(
auto
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
values_dim
.
emplace_back
(
input_dim
[
i
]);
}
if
(
out_w
!=
nullptr
)
{
out_w
->
set_dims
(
phi
::
make_ddim
(
values_dim
));
out_w
->
set_dtype
(
dtype
::
ToReal
(
x
.
dtype
()));
}
if
(
out_v
!=
nullptr
)
{
out_v
->
set_dims
(
input_dim
);
out_v
->
set_dtype
(
x
.
dtype
());
}
}
void
EinsumInferMeta
(
const
std
::
vector
<
const
MetaTensor
*>&
inputs
,
const
std
::
string
&
equation
,
MetaTensor
*
out
)
{
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
cdbfeff4
...
...
@@ -103,6 +103,12 @@ void EigvalsInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
EigvalshInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
bool
is_test
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
);
void
EinsumInferMeta
(
const
std
::
vector
<
const
MetaTensor
*>&
inputs
,
const
std
::
string
&
equation
,
MetaTensor
*
out
);
...
...
paddle/phi/kernels/cpu/eigvalsh_grad_kernel.cc
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/eigvalsh_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/eigvalsh_grad_kernel_impl.h"
PD_REGISTER_KERNEL
(
eigvalsh_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
EigvalshGradKernel
,
float
,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
paddle/phi/kernels/cpu/eigvalsh_kernel.cc
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/eigvalsh_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/eigvalsh_kernel_impl.h"
PD_REGISTER_KERNEL
(
eigvalsh
,
CPU
,
ALL_LAYOUT
,
phi
::
EigvalshKernel
,
float
,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
paddle/phi/kernels/eigvalsh_grad_kernel.h
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
EigvalshGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out_v
,
const
DenseTensor
&
out_w_grad
,
const
std
::
string
&
uplo
,
bool
is_test
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/
fluid/operators/eigvalsh_op.cu
→
paddle/
phi/kernels/eigvalsh_kernel.h
浏览文件 @
cdbfeff4
/* Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -12,27 +12,18 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/eigvalsh_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
eigvalsh
,
ops
::
EigvalshKernel
<
phi
::
GPUContext
,
float
,
float
>
,
ops
::
EigvalshKernel
<
phi
::
GPUContext
,
double
,
double
>
,
ops
::
EigvalshKernel
<
phi
::
GPUContext
,
float
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EigvalshKernel
<
phi
::
GPUContext
,
double
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CUDA_KERNEL
(
eigvalsh_grad
,
ops
::
EigvalshGradKernel
<
phi
::
GPUContext
,
float
,
float
>
,
ops
::
EigvalshGradKernel
<
phi
::
GPUContext
,
double
,
double
>
,
ops
::
EigvalshGradKernel
<
phi
::
GPUContext
,
float
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
EigvalshGradKernel
<
phi
::
GPUContext
,
double
,
paddle
::
platform
::
complex
<
double
>>
);
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
EigvalshKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
string
&
uplo
,
bool
is_test
,
DenseTensor
*
out_w
,
DenseTensor
*
out_v
);
}
// namespace phi
paddle/phi/kernels/gpu/eigvalsh_grad_kernel.cu
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/eigvalsh_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/eigvalsh_grad_kernel_impl.h"
PD_REGISTER_KERNEL
(
eigvalsh_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
EigvalshGradKernel
,
float
,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
paddle/phi/kernels/gpu/eigvalsh_kernel.cu
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/eigvalsh_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/eigvalsh_kernel_impl.h"
PD_REGISTER_KERNEL
(
eigvalsh
,
// cuda_only
GPU
,
ALL_LAYOUT
,
phi
::
EigvalshKernel
,
float
,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
paddle/phi/kernels/impl/eigvalsh_grad_kernel_impl.h
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#pragma once
#include "paddle/phi/kernels/eigvalsh_grad_kernel.h"
#include "paddle/phi/kernels/complex_kernel.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
EigvalshGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out_v
,
const
DenseTensor
&
out_w_grad
,
const
std
::
string
&
uplo
,
bool
is_test
,
DenseTensor
*
x_grad
)
{
auto
tV
=
phi
::
TransposeLast2Dim
<
T
>
(
dev_ctx
,
phi
::
Conj
<
T
>
(
dev_ctx
,
out_v
));
x_grad
->
Resize
(
out_v
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
auto
output_v_vector
=
EigenVector
<
T
>::
Flatten
(
out_v
);
auto
output_w_grad_vector
=
EigenVector
<
phi
::
dtype
::
Real
<
T
>>::
Flatten
(
out_w_grad
);
auto
result_vector
=
EigenVector
<
T
>::
Flatten
(
*
x_grad
);
auto
&
place
=
*
dev_ctx
.
eigen_device
();
std
::
vector
<
int
>
broadcast_factor
;
broadcast_factor
.
push_back
(
out_v
.
dims
().
at
(
out_v
.
dims
().
size
()
-
1
));
result_vector
.
device
(
place
)
=
output_v_vector
*
output_w_grad_vector
.
broadcast
(
broadcast_factor
);
*
x_grad
=
phi
::
Matmul
<
T
>
(
dev_ctx
,
*
x_grad
,
tV
);
}
}
// namespace phi
paddle/phi/kernels/impl/eigvalsh_kernel_impl.h
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/kernels/eigvalsh_kernel.h"
#include "paddle/phi/kernels/funcs/values_vectors_functor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
EigvalshKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
string
&
uplo
,
bool
is_test
,
DenseTensor
*
out_w
,
DenseTensor
*
out_v
)
{
bool
is_lower
=
(
uplo
==
"L"
);
phi
::
funcs
::
MatrixEighFunctor
<
Context
,
T
>
functor
;
if
(
is_test
)
{
functor
(
dev_ctx
,
x
,
out_w
,
nullptr
,
is_lower
,
false
);
}
else
{
functor
(
dev_ctx
,
x
,
out_w
,
out_v
,
is_lower
,
true
);
}
}
}
// namespace phi
paddle/phi/ops/compat/eigvalsh_sig.cc
0 → 100644
浏览文件 @
cdbfeff4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
EigvalshOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"eigvalsh"
,
{
"X"
},
{
"UPLO"
,
"is_test"
},
{
"Eigenvalues"
,
"Eigenvectors"
});
}
KernelSignature
EigvalshGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"eigvalsh_grad"
,
{
"Eigenvectors"
,
"Eigenvalues@GRAD"
},
{
"UPLO"
,
"is_test"
},
{
"X@GRAD"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
eigvalsh
,
phi
::
EigvalshOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
eigvalsh_grad
,
phi
::
EigvalshGradOpArgumentMapping
);
python/paddle/fluid/tests/unittests/test_eigvalsh_op.py
浏览文件 @
cdbfeff4
...
...
@@ -51,6 +51,8 @@ class TestEigvalshOp(OpTest):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
op_type
=
"eigvalsh"
self
.
python_api
=
paddle
.
linalg
.
eigvalsh
self
.
python_out_sig
=
[
'Eigenvalues'
]
self
.
init_input
()
self
.
init_config
()
np
.
random
.
seed
(
123
)
...
...
@@ -69,10 +71,10 @@ class TestEigvalshOp(OpTest):
def
test_check_output
(
self
):
# Vectors in posetive or negative is equivalent
self
.
check_output
(
no_check_set
=
[
'Eigenvectors'
])
self
.
check_output
(
no_check_set
=
[
'Eigenvectors'
]
,
check_eager
=
True
)
def
test_grad
(
self
):
self
.
check_grad
([
"X"
],
[
"Eigenvalues"
])
self
.
check_grad
([
"X"
],
[
"Eigenvalues"
]
,
check_eager
=
True
)
class
TestEigvalshUPLOCase
(
TestEigvalshOp
):
...
...
python/paddle/tensor/linalg.py
浏览文件 @
cdbfeff4
...
...
@@ -3052,7 +3052,11 @@ def eigvalsh(x, UPLO='L', name=None):
print(out_value)
#[0.17157288, 5.82842712]
"""
if
paddle
.
in_dynamic_mode
():
if
in_dygraph_mode
():
values
,
_
=
_C_ops
.
final_state_eigvalsh
(
x
,
UPLO
,
x
.
stop_gradient
)
return
values
elif
paddle
.
in_dynamic_mode
():
is_test
=
x
.
stop_gradient
values
,
_
=
_C_ops
.
eigvalsh
(
x
,
'UPLO'
,
UPLO
,
'is_test'
,
is_test
)
return
values
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录