linalg.py 131.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _varbase_creator, _dygraph_tracer, in_dygraph_mode, _non_static_mode
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
20 21
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
22 23 24
from .math import multiply, add
from .logic import logical_not
from .creation import full
25

A
andyjpaddle 已提交
26
import paddle
27
import warnings
28
from paddle.common_ops_import import VarDesc
29
from paddle import _C_ops, _legacy_C_ops
30

31 32
__all__ = []

33 34 35
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
88
        return _C_ops.transpose(x, perm)
89 90
    else:
        if _in_legacy_dygraph():
91
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
117 118 119 120 121 122 123
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
124 125 126
    return out


S
ShenLiang 已提交
127
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
128
    """
129 130
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
131
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
132

S
ShenLiang 已提交
133 134
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
135 136 137 138 139

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
140 141
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
142 143 144 145 146 147 148 149
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

150 151
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
152
      After the matrix multiply, the prepended dimension is removed.
153 154

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
155 156
      the matrix-vector product is obtained.

157 158 159 160 161 162 163 164 165
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
166
      out will be a (j, k, n, p) tensor.
167 168

    Args:
S
ShenLiang 已提交
169 170
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
171 172 173 174 175 176
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
177
        Tensor: The output Tensor.
178 179 180

    Examples:

C
Chen Long 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
219 220

    """
221
    if in_dygraph_mode():
222
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
223 224 225

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
226
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
227 228
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

229
    attrs = {
S
ShenLiang 已提交
230 231
        'trans_x': transpose_x,
        'trans_y': transpose_y,
232 233 234 235 236
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
237
            check_variable_and_dtype(
238 239 240
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
241 242 243

    __check_input(x, y)

S
ShenLiang 已提交
244
    helper = LayerHelper('matmul_v2', **locals())
245
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
246 247 248 249 250 251 252
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
253
    return out
Z
Zhang Ting 已提交
254 255


myq406450149's avatar
myq406450149 已提交
256
def norm(x, p='fro', axis=None, keepdim=False, name=None):
257
    """
S
swtkiwi 已提交
258

259 260 261
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

262
    Note:
263 264 265 266 267
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

268
    Args:
myq406450149's avatar
myq406450149 已提交
269
        x (Tensor): The input tensor could be N-D tensor, and the input data
270
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
271
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
272
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
273
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
274 275
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
276
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
277
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
278
            Default value is `None`.
279 280 281 282 283 284 285 286
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
287
        Tensor: results of norm operation on the specified axis of input tensor,
288
        it's data type is the same as input's Tensor.
289

290 291
    Examples:
        .. code-block:: python
292

293
            import paddle
294 295 296 297 298 299 300 301 302
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
303

304
            # compute frobenius norm along last two dimensions.
305
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
306 307
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
308

309
            # compute 2-order vector norm along last dimension.
310
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
311 312 313
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
314 315

            # compute 2-order  norm along [0,1] dimension.
316
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
317 318
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
319 320

            # compute inf-order  norm
321 322 323 324 325 326 327 328 329
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
330 331

            # compute -inf-order  norm
332 333 334 335 336 337 338 339 340
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
341 342
    """

myq406450149's avatar
myq406450149 已提交
343
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
344 345 346 347 348 349 350 351 352 353 354
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
355 356 357

        if in_dygraph_mode():
            if dim is None:
358 359
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
360
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
361
            if dim is None:
362 363 364 365
                return _legacy_C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                                    'reduce_all', True)
            return _legacy_C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim',
                                                keepdim, 'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
366 367
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
368 369 370 371 372
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
373 374
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
375

376 377 378 379
        helper.append_op(type='frobenius_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
380 381 382 383 384 385
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
386
                    asvector=False,
387 388 389 390 391 392 393 394 395
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
396 397
        if in_dygraph_mode():
            if axis is None: axis = -1
398
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
399 400

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
401
            if axis is None: axis = -1
402 403 404
            return _legacy_C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                        'keepdim', keepdim, 'asvector',
                                        asvector)
405

406 407 408 409
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
410 411 412
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

413 414 415 416
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
417
            'asvector': asvector,
418 419 420
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
421 422
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
423

424 425 426 427
        helper.append_op(type='p_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
428 429
        return out

myq406450149's avatar
myq406450149 已提交
430 431 432 433 434 435
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
436
        if in_dygraph_mode():
437
            out = _C_ops.abs(input)
438 439 440 441 442
            reduce_all = True if axis == None or axis == [] or asvector == True else False
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
443
                return _C_ops.max(out, axis, keepdim)
444
            else:
445
                return _C_ops.min(out, axis, keepdim)
446

O
OccupyMars2025 已提交
447
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
448 449 450 451 452 453 454 455 456
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

457
        reduce_type = 'reduce_max' if porder == np.float64(
myq406450149's avatar
myq406450149 已提交
458
            'inf') else 'reduce_min'
459 460 461 462 463 464 465 466
        helper.append_op(type=reduce_type,
                         inputs={'X': out},
                         outputs={'Out': reduce_out},
                         attrs={
                             'dim': axis,
                             'keep_dim': keepdim,
                             'reduce_all': reduce_all
                         })
myq406450149's avatar
myq406450149 已提交
467 468 469 470

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
471 472 473 474
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
475
        if in_dygraph_mode():
476 477 478 479
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
            out = _C_ops.pow(sum_out, float(1. / porder))
480 481
            return out

myq406450149's avatar
myq406450149 已提交
482 483 484 485 486
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
487 488 489
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
myq406450149's avatar
myq406450149 已提交
490 491 492
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

493 494 495 496
        block.append_op(type='pow',
                        inputs={'X': abs_out},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
myq406450149's avatar
myq406450149 已提交
497 498
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
499 500 501 502 503 504 505 506 507 508 509 510
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': True if axis is None else False
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
myq406450149's avatar
myq406450149 已提交
511 512
        return out

513 514 515
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
516
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
517 518 519 520
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
521 522 523 524 525 526
            return vector_norm(x,
                               porder=p,
                               axis=axis,
                               keepdim=keepdim,
                               asvector=True,
                               name=name)
527
        else:
528 529 530
            raise ValueError(
                "only valid p type is string or float, found {}".format(
                    type(p)))
531

myq406450149's avatar
myq406450149 已提交
532 533
    if isinstance(axis, tuple):
        axis = list(axis)
534 535 536 537 538
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
539 540
        if isinstance(p, str):
            if p == "fro":
541 542 543 544 545 546
                return vector_norm(x,
                                   porder=2,
                                   axis=axis,
                                   keepdim=keepdim,
                                   asvector=False,
                                   name=name)
myq406450149's avatar
myq406450149 已提交
547 548 549 550 551

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
552 553 554 555 556 557
            return vector_norm(x,
                               axis=axis,
                               porder=p,
                               keepdim=keepdim,
                               asvector=False,
                               name=name)
558 559 560 561 562 563 564
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
565 566 567
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
568 569
        elif p == 0:
            raise ValueError(
570 571
                "just suport axis type int or list (length of list <=1) if p = 0, found {}"
                .format(axis))
572
        else:
573 574 575 576 577
            return p_matrix_norm(x,
                                 porder=p,
                                 axis=axis,
                                 keepdim=keepdim,
                                 name=name)
578 579 580 581 582 583
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


584
def dist(x, y, p=2, name=None):
585
    r"""
S
swtkiwi 已提交
586

Z
Zhang Ting 已提交
587
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
588 589
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
614 615 616 617 618 619 620

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
621
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
622 623 624 625 626

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
627
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
628 629 630 631 632 633 634 635 636 637 638 639

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
640 641
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
642 643 644
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
645
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
646 647 648 649 650 651

    Examples:
        .. code-block:: python

            import paddle

652 653
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
654 655
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
656

657 658
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
659

660 661
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
662

663 664
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
665
    """
H
hong 已提交
666
    if in_dygraph_mode():
667
        return _C_ops.dist(x, y, p)
H
hong 已提交
668

Z
Zhang Ting 已提交
669 670 671 672 673 674 675 676 677
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
678 679 680 681
    helper.append_op(type='dist',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
Z
Zhang Ting 已提交
682
    return out
L
liuwei1031 已提交
683 684


685 686 687 688 689 690
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
691 692
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
747
            # a.numpy()
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

782 783 784 785 786 787 788 789 790 791 792 793 794 795
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
            sum_out = _legacy_C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                               keepdim, 'reduce_all',
                                               reduce_all)
796
            if porder == 1 or porder == np.inf:
797 798 799
                return _legacy_C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
800
            if porder == -1 or porder == -np.inf:
801 802 803
                return _legacy_C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
804 805 806 807 808 809 810 811 812 813 814 815 816 817
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            sum_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            block.append_op(type='abs',
                            inputs={'X': input},
                            outputs={'Out': abs_out})
            block.append_op(type='reduce_sum',
                            inputs={'X': abs_out},
                            outputs={'Out': sum_out},
818
                            attrs={
819
                                'dim': axis,
820 821 822
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
            if porder == 1 or porder == np.inf:
                block.append_op(type='reduce_max',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            if porder == -1 or porder == -np.inf:
                block.append_op(type='reduce_min',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            return out
842 843 844 845 846 847 848 849 850

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

851
        if in_dygraph_mode():
852
            pow_out = _C_ops.pow(input, porder)
853 854
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
855
            return _C_ops.pow(sum_out_2, float(1. / porder))
856
        elif paddle.in_dynamic_mode():
857 858 859 860 861 862 863 864
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
            sum_out_1 = _legacy_C_ops.reduce_sum(pow_out, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            sum_out_2 = _legacy_C_ops.reduce_sum(sum_out_1, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1. / porder))
865 866 867 868 869 870 871 872 873 874

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        block.append_op(type='pow',
                        inputs={'X': input},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out_1},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_sum',
                        inputs={'X': sum_out_1},
                        outputs={'Out': sum_out_2},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out_2},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
899 900 901 902 903 904 905 906 907 908 909 910 911
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

912
        if _non_static_mode():
913
            if porder == "nuc":
914
                if in_dygraph_mode():
915
                    return _C_ops.sum(s, axis, None, keepdim)
916
                else:
917 918 919
                    return _legacy_C_ops.reduce_sum(s, 'dim', axis, 'keepdim',
                                                    keepdim, 'reduce_all',
                                                    reduce_all)
920 921 922 923
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
924
                    return _C_ops.divide(max_out, min_out)
925
                if porder == -2:
926
                    return _C_ops.divide(min_out, max_out)
927 928 929 930 931 932 933 934 935 936 937 938 939 940

            else:
                max_out = _legacy_C_ops.reduce_max(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                min_out = _legacy_C_ops.reduce_min(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False)
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False)
941 942 943 944 945

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
946 947 948 949 950 951 952 953
            block.append_op(type='reduce_sum',
                            inputs={'X': s},
                            outputs={'Out': out},
                            attrs={
                                'dim': axis,
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
954 955 956 957 958
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
        block.append_op(type='reduce_max',
                        inputs={'X': s},
                        outputs={'Out': max_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_min',
                        inputs={'X': s},
                        outputs={'Out': min_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
975
        if porder == 2:
976 977 978 979 980 981 982 983 984 985
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': max_out,
                                'Y': min_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
986 987
            return out
        if porder == -2:
988 989 990 991 992 993 994 995 996 997
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': min_out,
                                'Y': max_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
998 999 1000
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1001
        if paddle.in_dynamic_mode():
1002 1003 1004 1005 1006
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1007 1008 1009
        raise ValueError(
            "input should be a matrix or batches of matrices, " +
            "but the dimention of received input is {}".format(len(x_shape)))
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1023 1024
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
                    x_inv, porder=p, axis=[-2])
1025
            if p in (np.inf, -np.inf):
1026 1027
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
                    x_inv, porder=p, axis=[-1])
1028 1029 1030 1031 1032 1033 1034 1035 1036
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1037 1038
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) +
            "1, -1, 2, -2, inf, -inf) or none")
1039 1040


L
liuwei1031 已提交
1041 1042 1043
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1044

1045
    Note:
1046 1047
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1048 1049

    Parameters:
S
ShenLiang 已提交
1050 1051
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1052 1053
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1054
    Returns:
1055
        Tensor: the calculated result Tensor.
1056

L
liuwei1031 已提交
1057 1058 1059 1060 1061
    Examples:

    .. code-block:: python

        import paddle
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1072
        z = paddle.dot(x, y)
1073
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1074 1075

    """
1076 1077
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1078 1079
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1080

L
liuwei1031 已提交
1081
    op_type = 'dot'
1082

L
liuwei1031 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
    helper.append_op(type="dot",
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     attrs={},
                     outputs={"Out": out})
L
liuwei1031 已提交
1105
    return out
1106 1107


Z
zhiboniu 已提交
1108 1109 1110 1111 1112
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1113
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1221 1222
def t(input, name=None):
    """
1223 1224
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1225
    the paddle.transpose function which perm dimensions set 0 and 1.
1226

1227
    Args:
1228
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1229
        name(str, optional): The default value is None.  Normally there is no need for
1230 1231
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1232
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1233

1234
    Examples:
1235

1236 1237 1238
        .. code-block:: python
           :name: code-example
             import paddle
1239

1240
             # Example 1 (0-D tensor)
1241 1242
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1243

1244
             # Example 2 (1-D tensor)
1245 1246 1247
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1248 1249

             # Example 3 (2-D tensor)
1250 1251 1252 1253 1254 1255 1256 1257
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1258

1259 1260 1261 1262 1263 1264
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
1265 1266 1267 1268 1269
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1270
        out = _C_ops.transpose(input, perm)
1271 1272 1273
        return out

    if _in_legacy_dygraph():
1274 1275 1276 1277
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1278
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1279 1280 1281
        return out

    check_variable_and_dtype(
1282 1283
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
1284 1285 1286 1287 1288 1289 1290

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1291 1292 1293 1294 1295 1296 1297
        helper.append_op(type='transpose2',
                         inputs={'X': [input]},
                         outputs={
                             'Out': [out],
                             'XShape': [input_shape]
                         },
                         attrs={'axis': [1, 0]})
1298
    return out
1299 1300


W
wanghuancoder 已提交
1301
def cross(x, y, axis=9, name=None):
1302
    """
1303
    Computes the cross product between two tensors along an axis.
1304

1305 1306
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1307

1308
    Args:
1309 1310
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1311
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1312
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1313 1314

    Returns:
1315
        Tensor. A Tensor with same data type as `x`.
1316

1317 1318
    Examples:
        .. code-block:: python
1319

1320
            import paddle
1321

Z
Zhou Wei 已提交
1322 1323 1324 1325 1326 1327
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1338
    """
J
Jiabin Yang 已提交
1339
    if in_dygraph_mode():
1340
        axis = K_DEFAULT_DIM if axis is None else axis
1341
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1342 1343 1344
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1345
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1346
            else:
1347
                return _legacy_C_ops.cross(x, y)
1348
        else:
J
Jiabin Yang 已提交
1349 1350 1351 1352 1353
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1354 1355 1356 1357 1358 1359 1360
            helper.append_op(type='cross',
                             inputs={
                                 'X': x,
                                 'Y': y
                             },
                             outputs={'Out': out},
                             attrs=attrs)
J
Jiabin Yang 已提交
1361
            return out
1362 1363


1364
def cholesky(x, upper=False, name=None):
1365
    r"""
G
Guo Sheng 已提交
1366
    Computes the Cholesky decomposition of one symmetric positive-definite
1367 1368
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1369 1370 1371 1372 1373 1374
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1375
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1376 1377 1378 1379 1380
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1381 1382
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1383 1384

    Returns:
1385 1386
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1387

G
Guo Sheng 已提交
1388 1389 1390 1391 1392 1393
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1394 1395 1396
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1397
            x = paddle.to_tensor(x_data)
1398
            out = paddle.linalg.cholesky(x, upper=False)
1399
            print(out)
1400 1401 1402
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1403 1404

    """
H
hong 已提交
1405
    if in_dygraph_mode():
1406
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1407 1408

    if _in_legacy_dygraph():
1409
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1410

G
Guo Sheng 已提交
1411 1412 1413 1414
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1415 1416 1417 1418
    helper.append_op(type='cholesky',
                     inputs={'X': [x]},
                     outputs={'Out': out},
                     attrs={'upper': upper})
G
Guo Sheng 已提交
1419 1420 1421
    return out


1422 1423 1424 1425
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1426
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1427
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1428 1429

    Args:
1430 1431 1432 1433
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1434
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1435 1436
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1437
            the lower triangular of the matrix to compute.
1438 1439 1440 1441
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1459

1460
    """
1461 1462 1463 1464 1465 1466 1467
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1468 1469
            return _C_ops.matrix_rank_tol(x, tol_tensor, use_default_tol,
                                          hermitian)
1470

1471 1472 1473 1474 1475 1476
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1477
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1478 1479

    if _in_legacy_dygraph():
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1495 1496 1497
        return _legacy_C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr,
                                         'hermitian', hermitian,
                                         'use_default_tol', use_default_tol)
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1520 1521 1522 1523
    helper.append_op(type='matrix_rank',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
1524 1525 1526
    return out


1527 1528 1529 1530 1531 1532 1533 1534 1535
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1536 1537
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1538 1539 1540 1541
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1542
        Tensor: The product Tensor.
1543 1544

    Examples:
S
sunzhongkai588 已提交
1545 1546 1547
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1548

S
sunzhongkai588 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1558 1559 1560 1561 1562 1563
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1564

1565
    """
Y
yaoxuefeng 已提交
1566 1567 1568 1569
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1570 1571
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1572 1573
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1574 1575
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1576 1577
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1578 1579
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1580

1581
    if in_dygraph_mode():
1582
        return _C_ops.bmm(x, y)
1583

Z
zhiboniu 已提交
1584
    if paddle.in_dynamic_mode():
1585
        return _legacy_C_ops.bmm(x, y)
1586 1587

    helper = LayerHelper('bmm', **locals())
1588 1589 1590
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1591 1592


1593
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1594
    """
1595
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1596 1597 1598
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1599
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1600
            should be float32, float64, int32, int64.
1601 1602 1603 1604
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1605 1606

    Returns:
1607
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1608

1609
    Examples:
Q
Qi Li 已提交
1610
        .. code-block:: python
1611

Q
Qi Li 已提交
1612
            import paddle
1613

1614
            inputs = paddle.to_tensor([1, 2, 1])
1615 1616
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1617
    """
H
hong 已提交
1618
    if in_dygraph_mode():
1619
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1620 1621

    if _in_legacy_dygraph():
1622 1623
        return _legacy_C_ops.histogram(input, "bins", bins, "min", min, "max",
                                       max)
Q
Qi Li 已提交
1624 1625

    helper = LayerHelper('histogram', **locals())
1626 1627 1628
    check_variable_and_dtype(input, 'X',
                             ['int32', 'int64', 'float32', 'float64'],
                             'histogram')
Q
Qi Li 已提交
1629
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1630 1631 1632 1633 1634 1635 1636 1637
    helper.append_op(type='histogram',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'bins': bins,
                         'min': min,
                         'max': max
                     })
Q
Qi Li 已提交
1638
    return out
S
smallv0221 已提交
1639 1640 1641 1642


def bincount(x, weights=None, minlength=0, name=None):
    """
1643
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1671 1672 1673
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1674
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1687 1688 1689 1690 1691 1692 1693
    helper.append_op(type='bincount',
                     inputs={
                         'X': x,
                         'Weights': weights
                     },
                     outputs={'Out': out},
                     attrs={'minlength': minlength})
S
smallv0221 已提交
1694
    return out
1695 1696 1697 1698 1699 1700 1701


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1702
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1703
            should be one of float32, float64.
F
furnace 已提交
1704
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1720 1721
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1722
            out = paddle.mv(x, vec)
1723 1724 1725
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1726
    """
J
Jiabin Yang 已提交
1727
    if in_dygraph_mode():
1728
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1729 1730
    else:
        if _in_legacy_dygraph():
1731
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1732 1733
            return out
        else:
1734

J
Jiabin Yang 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1744 1745
                        "x should be 2-dimensional. But received x's dimention: {}"
                        .format(x_shape))
J
Jiabin Yang 已提交
1746 1747
                if len(vec_shape) != 1:
                    raise ValueError(
1748 1749
                        "vec should be 1-dimensional. But received vec's dimention: {}"
                        .format(vec_shape))
J
Jiabin Yang 已提交
1750 1751 1752 1753 1754

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1755 1756 1757 1758 1759 1760
            helper.append_op(type='mv',
                             inputs={
                                 'X': x,
                                 'Vec': vec
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
1761
            return out
1762 1763


1764
def det(x, name=None):
H
huangxu96 已提交
1765 1766
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1767

H
huangxu96 已提交
1768
    Args:
1769 1770 1771 1772
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1773
    Returns:
1774
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1775

1776
    Examples:
H
huangxu96 已提交
1777 1778
        .. code-block:: python

1779
            import paddle
H
huangxu96 已提交
1780

1781
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1782

1783
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1784

1785
            print(A)
1786

1787
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1788

1789

H
huangxu96 已提交
1790
    """
C
chentianyu03 已提交
1791
    if in_dygraph_mode():
1792
        return _C_ops.det(x)
C
chentianyu03 已提交
1793 1794

    if _in_legacy_dygraph():
1795
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1813 1814 1815
    helper.append_op(type='determinant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1816 1817 1818
    return out


1819
def slogdet(x, name=None):
H
huangxu96 已提交
1820 1821 1822
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1823

H
huangxu96 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1835
    Examples:
1836
        .. code-block:: python
H
huangxu96 已提交
1837

1838
            import paddle
H
huangxu96 已提交
1839

1840
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1841

1842
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1843

1844
            print(A)
1845

1846 1847
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1848 1849

    """
1850
    if in_dygraph_mode():
1851
        return _C_ops.slogdet(x)
1852 1853

    elif paddle.in_dynamic_mode():
1854
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1872 1873 1874
    helper.append_op(type='slogdeterminant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1875 1876 1877
    return out


1878 1879
def svd(x, full_matrices=False, name=None):
    r"""
1880 1881 1882 1883 1884
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1885 1886
        X = U * diag(S) * VT

1887 1888
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1889
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1890 1891 1892 1893
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1894
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1895
            If full_matrices = False, svd op will use a economic method to store U and V.
1896
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1897
        name (str, optional): Name for the operation (optional, default is None).
1898
            For more information, please refer to :ref:`api_guide_Name`.
1899 1900

    Returns:
1901
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1902

1903 1904 1905 1906
    Examples:
        .. code-block:: python

            import paddle
1907 1908 1909

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1910
            u, s, vh = paddle.linalg.svd(x)
1911 1912 1913 1914 1915
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1916
            print (s)
1917
            #S = [8.14753743, 0.78589688]
1918
            print (vh)
1919 1920
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1921

1922
            # one can verify : U * S * VT == X
1923
            #                  U * UH == I
1924
            #                  V * VH == I
1925
    """
1926
    if in_dygraph_mode():
1927
        return _C_ops.svd(x, full_matrices)
1928
    if _in_legacy_dygraph():
1929
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
1941 1942 1943 1944 1945 1946 1947
        outputs={
            'U': u,
            'VH': vh,
            'S': s
        },
        attrs=attrs,
    )
1948 1949 1950
    return u, s, vh


1951 1952 1953
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1954

1955 1956 1957 1958 1959
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1960

1961 1962
    Specifically,

1963
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1964

1965 1966
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1967
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1968 1969 1970 1971 1972 1973

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1974
        name (str, optional): Name for the operation (optional, default is None).
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1989
            print(paddle.linalg.matrix_power(x, 2))
1990 1991 1992 1993
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1994
            print(paddle.linalg.matrix_power(x, 0))
1995 1996 1997 1998
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1999
            print(paddle.linalg.matrix_power(x, -2))
2000 2001 2002 2003
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2004
    if in_dygraph_mode():
2005
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2006 2007

    if _in_legacy_dygraph():
2008
        return _legacy_C_ops.matrix_power(x, "n", n)
2009 2010 2011 2012 2013

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2014 2015 2016 2017
    helper.append_op(type='matrix_power',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'n': n})
2018
    return out
2019 2020


2021 2022 2023 2024 2025 2026 2027
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2028 2029
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2030
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2031
            If mode = "reduced", qr op will return reduced Q and R matrices,
2032
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2033
            If mode = "complete", qr op will return complete Q and R matrices,
2034 2035 2036 2037 2038
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2039

2040
    Returns:
2041
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2042
        If mode = "r", qr will return a tensor which represents R.
2043 2044

    Examples:
2045 2046
        .. code-block:: python

2047
            import paddle
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2060 2061

            # one can verify : X = Q * R ;
2062
    """
Y
Yulong Ao 已提交
2063
    if in_dygraph_mode():
2064
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2065 2066 2067 2068 2069
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2070
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2082 2083 2084 2085 2086 2087 2088
    helper.append_op(type='qr',
                     inputs={'X': [x]},
                     outputs={
                         'Q': q,
                         'R': r
                     },
                     attrs=attrs)
2089 2090 2091 2092 2093 2094
    if mode == "r":
        return r
    else:
        return q, r


2095 2096
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2097
    Computes the LU factorization of an N-D(N>=2) matrix x.
2098

2099
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2100 2101 2102 2103
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2104 2105 2106 2107 2108 2109

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2121

2122
    Returns:
2123
        factorization (Tensor), LU matrix, the factorization of input X.
2124

2125 2126 2127
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2128

2129 2130 2131
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2132

2133 2134

    Examples:
2135 2136
        .. code-block:: python

2137
            import paddle
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2153

2154 2155 2156 2157 2158 2159
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2160
            # [1., 0., 0.]]),
2161 2162 2163 2164
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2165
            # [0.60000000, 0.50000000]]),
2166 2167 2168 2169 2170
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2171 2172

            # one can verify : X = P @ L @ U ;
2173
    """
L
Lin Manhui 已提交
2174 2175

    if in_dygraph_mode():
2176
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2177
    elif paddle.in_dynamic_mode():
2178
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
        helper.append_op(type='lu',
                         inputs={'X': x},
                         outputs={
                             'Out': lu,
                             'Pivots': p,
                             'Infos': info
                         },
                         attrs=attrs)
2195 2196 2197 2198 2199 2200 2201 2202
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2203
    Unpack L U and P to single matrix tensor .
2204 2205 2206
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2207 2208 2209 2210 2211

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2225

2226
    Returns:
2227
        P (Tensor), Permutation matrix P of lu factorization.
2228

2229
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2230

2231
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2232

2233 2234

    Examples:
2235 2236
        .. code-block:: python

2237
            import paddle
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2253

2254 2255 2256 2257 2258 2259
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2260
            # [1., 0., 0.]]),
2261 2262 2263 2264
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2265
            # [0.60000000, 0.50000000]]),
2266 2267 2268 2269 2270
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2271
            # one can verify : X = P @ L @ U ;
2272 2273
    """

2274
    if in_dygraph_mode():
2275
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2276 2277
        return P, L, U

Z
zhiboniu 已提交
2278
    if paddle.in_dynamic_mode():
2279 2280
        P, L, U = _legacy_C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                          'unpack_pivots', unpack_pivots)
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
    helper.append_op(type='lu_unpack',
                     inputs={
                         'X': x,
                         'Pivots': y
                     },
                     outputs={
                         'Pmat': p,
                         'L': l,
                         'U': u
                     },
                     attrs=attrs)
2303 2304 2305
    return p, l, u


L
Lijunhui 已提交
2306 2307
def eig(x, name=None):
    """
2308
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2309

2310 2311 2312 2313 2314 2315
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2316 2317 2318 2319

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2320
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2334
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2335
                               [9.956216,  8.749598,  6.066444 ],
2336
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2337
            w, v = paddle.linalg.eig(x)
2338
            print(v)
L
Lijunhui 已提交
2339 2340 2341 2342 2343 2344 2345 2346
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2347
            print(w)
L
Lijunhui 已提交
2348 2349 2350 2351
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2352
    if in_dygraph_mode():
2353
        return _C_ops.eig(x)
2354
    elif paddle.in_dynamic_mode():
2355
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2356 2357
        return w, v

2358 2359 2360
    check_variable_and_dtype(x, 'X',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eig')
L
Lijunhui 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2373 2374 2375
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2376 2377 2378

    Warning:
        The gradient kernel of this operator does not yet developed.
2379 2380 2381 2382
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2383
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2384
            Its data type should be float32, float64, complex64, or complex128.
2385
        name (str, optional): Name for the operation (optional, default is None).
2386
            For more information, please refer to :ref:`api_guide_Name`.
2387

2388
    Returns:
2389 2390
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2391 2392 2393 2394 2395

    Examples:
        .. code-block:: python

            import paddle
2396

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2410 2411
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvals')
2412 2413 2414 2415

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2416 2417
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}"
            .format(len(x_shape), x_shape))
2418 2419 2420

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2421 2422
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}"
            .format(x_shape))
2423

R
Ruibiao Chen 已提交
2424
    if in_dygraph_mode():
2425
        return _C_ops.eigvals(x)
2426 2427
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2428 2429 2430 2431 2432 2433 2434

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2435 2436 2437 2438
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2439
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2476 2477
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2478
        out = paddle.linalg.multi_dot([A, B])
2479
        print(out.shape)
2480 2481 2482
        # [3, 5]

        # A * B * C
2483 2484 2485
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2486
        out = paddle.linalg.multi_dot([A, B, C])
2487
        print(out.shape)
2488 2489 2490
        # [10, 7]

    """
2491
    if _in_legacy_dygraph():
2492
        return _legacy_C_ops.multi_dot(x)
2493
    if in_dygraph_mode():
2494
        return _C_ops.multi_dot(x)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2509 2510 2511 2512


def eigh(x, UPLO='L', name=None):
    """
2513
    Compute the eigenvalues and eigenvectors of a
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2525 2526 2527 2528
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2529 2530 2531 2532 2533 2534

    Examples:
        .. code-block:: python

            import paddle

2535
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2536
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2537 2538 2539 2540 2541 2542 2543
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2544
    if in_dygraph_mode():
2545
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2546 2547

    if _in_legacy_dygraph():
2548
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2549 2550 2551 2552 2553 2554 2555 2556 2557

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2558 2559
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
2560
        if UPLO != 'L' and UPLO != 'U':
2561 2562 2563 2564 2565 2566
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2567 2568 2569
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigh')
2570 2571 2572 2573

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2574 2575 2576 2577 2578 2579 2580
    helper.append_op(type='eigh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={'UPLO': UPLO})
2581
    return out_value, out_vector
A
andyjpaddle 已提交
2582 2583 2584 2585


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2586
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2597

A
andyjpaddle 已提交
2598 2599 2600
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2601 2602 2603
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2604 2605 2606 2607
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2608
        rcond(Tensor, optional): the tolerance value to determine
2609
            when is a singular value zero. Default:1e-15.
2610 2611

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2612
            if complex or symmetric if real. Default: False.
2613 2614

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2615
            the layer will be named automatically.
2616

A
andyjpaddle 已提交
2617
    Returns:
2618
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2619
        pseudo inverse of x. Its shape should be (*, n, m).
2620

A
andyjpaddle 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2647 2648 2649
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2650 2651
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2652 2653 2654 2655
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2656

2657 2658 2659 2660 2661 2662
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2663
            st = _C_ops.unsqueeze(singular, [-2])
2664 2665 2666

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2667
            v = _C_ops.transpose(vt, perm)
2668 2669

            out_1 = v * st
2670
            out_2 = _C_ops.matmul(out_1, u, False, True)
2671 2672 2673
            return out_2
        else:
            # combine eigh and matmul op
2674
            s, u = _C_ops.eigh(x, 'UPLO')
2675
            s_abs = paddle.abs(s)
2676
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2688
            st = _C_ops.unsqueeze(singular, [-2])
2689 2690

            out_1 = u * st
2691 2692
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2693 2694 2695
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2696 2697
        if not hermitian:
            # combine svd and matmul op
2698 2699
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _legacy_C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2700 2701 2702 2703 2704 2705 2706
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2707 2708 2709 2710 2711
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2712
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2713 2714 2715

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2716
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2717 2718

            out_1 = v * st
2719
            if in_dygraph_mode():
2720
                out_2 = _C_ops.matmul(out_1, u, False, True)
2721
            else:
2722 2723
                out_2 = _legacy_C_ops.matmul_v2(out_1, u, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2724 2725 2726
            return out_2
        else:
            # combine eigh and matmul op
2727
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2728
            s_abs = paddle.abs(s)
2729
            max_singular_val = _legacy_C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2730 2731 2732 2733 2734 2735 2736
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2737 2738 2739 2740 2741
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2742
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2743 2744

            out_1 = u * st
2745
            u_conj = _legacy_C_ops.conj(u)
2746
            if in_dygraph_mode():
2747
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2748
            else:
2749 2750
                out_2 = _legacy_C_ops.matmul_v2(out_1, u_conj, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2764 2765 2766 2767 2768 2769 2770
                outputs={
                    'U': u,
                    'VH': vt,
                    'S': s
                },
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2771 2772

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2773 2774 2775 2776 2777 2778 2779 2780
            helper.append_op(type='reduce_max',
                             inputs={'X': s},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2781

2782
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2783 2784
            cutoff = rcond * max_singular_val
            y = float('inf')
2785
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2786 2787

            condition = s > cutoff
2788 2789 2790 2791 2792
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2793 2794 2795

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2796 2797 2798 2799 2800 2801 2802
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2803 2804 2805 2806 2807

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2808 2809 2810 2811 2812 2813 2814
            helper.append_op(type='transpose2',
                             inputs={'X': [vt]},
                             outputs={
                                 'Out': [v],
                                 'XShape': [v_shape]
                             },
                             attrs={'axis': perm})
A
andyjpaddle 已提交
2815 2816

            out_1 = helper.create_variable_for_type_inference(dtype)
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': v,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2827 2828 2829 2830 2831
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2832 2833 2834 2835
                inputs={
                    'X': out_1,
                    'Y': u
                },
A
andyjpaddle 已提交
2836
                outputs={'Out': out_2},
2837 2838 2839 2840 2841
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2842 2843 2844 2845 2846
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2847 2848
                x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'],
                'pinv')
A
andyjpaddle 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2859 2860 2861 2862 2863 2864 2865
            helper.append_op(type='eigh',
                             inputs={'X': x},
                             outputs={
                                 'Eigenvalues': s,
                                 'Eigenvectors': u
                             },
                             attrs={'UPLO': 'L'})
A
andyjpaddle 已提交
2866
            s_abs = helper.create_variable_for_type_inference(s_type)
2867 2868 2869
            helper.append_op(type='abs',
                             inputs={'X': s},
                             outputs={'Out': s_abs})
A
andyjpaddle 已提交
2870
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2871 2872 2873 2874 2875 2876 2877 2878
            helper.append_op(type='reduce_max',
                             inputs={'X': s_abs},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2879

2880
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2881 2882
            cutoff = rcond * max_singular_val
            y = float('inf')
2883
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2884 2885

            condition = s_abs > cutoff
2886 2887 2888 2889 2890
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2891 2892 2893

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2894 2895 2896 2897 2898 2899 2900
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2901 2902

            out_1 = helper.create_variable_for_type_inference(dtype)
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': u,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2913 2914 2915
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2916 2917 2918
            helper.append_op(type='conj',
                             inputs={'X': u},
                             outputs={'Out': [u_conj]})
A
andyjpaddle 已提交
2919 2920 2921 2922

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2923 2924 2925 2926
                inputs={
                    'X': out_1,
                    'Y': u_conj
                },
A
andyjpaddle 已提交
2927
                outputs={'Out': out_2},
2928 2929 2930 2931 2932
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2933
            return out_2
W
Weilong Wu 已提交
2934 2935 2936 2937 2938 2939 2940


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2941

W
Weilong Wu 已提交
2942 2943
    .. math::
        Out = X^-1 * Y
2944 2945

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2946

W
Weilong Wu 已提交
2947 2948 2949 2950 2951
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2952
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2953
            For more information, please refer to :ref:`api_guide_Name`.
2954

W
Weilong Wu 已提交
2955
    Returns:
2956
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2957
        Its data type should be the same as that of `x`.
2958

W
Weilong Wu 已提交
2959
    Examples:
2960

2961
        .. code-block:: python
2962

2963 2964 2965
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2966

2967 2968 2969 2970 2971
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2972

2973 2974
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2975
    """
2976
    if in_dygraph_mode():
2977
        return _C_ops.solve(x, y)
2978 2979

    if _in_legacy_dygraph():
2980
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
2981 2982 2983 2984 2985 2986 2987

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2988 2989 2990 2991 2992 2993
    helper.append_op(type="solve",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     outputs={"Out": out})
W
Weilong Wu 已提交
2994
    return out
2995 2996


2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3013
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3014
            zero or more batch dimensions. Its data type should be float32 or float64.
3015
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3016 3017
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3018
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3019 3020 3021 3022 3023 3024 3025 3026
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3027
        .. code-block:: python
3028

3029 3030 3031 3032
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3033

3034
            import paddle
3035

3036 3037 3038 3039 3040
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3041

3042 3043
            print(out)
            # [7, -2, -5]
3044
    """
H
hong 已提交
3045
    if in_dygraph_mode():
3046
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3047

Z
zhiboniu 已提交
3048
    if paddle.in_dynamic_mode():
3049 3050 3051
        return _legacy_C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                              transpose, 'unitriangular',
                                              unitriangular)
3052 3053 3054 3055 3056 3057 3058

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
    helper.append_op(type='triangular_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'upper': upper,
                         'transpose': transpose,
                         'unitriangular': unitriangular
                     })
3070 3071 3072
    return out


Z
zhiboniu 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3083
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3093
        .. code-block:: python
Z
zhiboniu 已提交
3094

3095
            import paddle
Z
zhiboniu 已提交
3096

3097 3098 3099 3100 3101
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3102

3103 3104
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3105
    """
H
hong 已提交
3106
    if in_dygraph_mode():
3107
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3108 3109

    if _in_legacy_dygraph():
3110
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3111 3112 3113 3114 3115 3116

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3117 3118 3119 3120 3121 3122 3123
    helper.append_op(type='cholesky_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={'upper': upper})
Z
zhiboniu 已提交
3124 3125 3126
    return out


3127 3128
def eigvalsh(x, UPLO='L', name=None):
    """
3129
    Computes the eigenvalues of a
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3147
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3148 3149
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3150 3151
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3152
    """
3153
    if in_dygraph_mode():
3154
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3155 3156 3157
        return values

    elif paddle.in_dynamic_mode():
3158
        is_test = x.stop_gradient
3159
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3170 3171
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
3172
        if UPLO != 'L' and UPLO != 'U':
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
    helper.append_op(type='eigvalsh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={
                         'UPLO': UPLO,
                         'is_test': is_test
                     })
3197
    return out_value
3198 3199


3200 3201 3202 3203 3204 3205 3206 3207
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3208
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3209
            should be one of float32, float64.
3210 3211
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3212
            machine precision of x_dtype.
3213 3214 3215
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3216
            for CUDA inputs.
3217
        name(str, optional): The default value is None. Normally there is no need for user to set
3218 3219 3220
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3221 3222 3223 3224 3225 3226 3227
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3260 3261 3262
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3263 3264
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}"
                .format(driver))
3265 3266 3267 3268
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3269 3270
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}"
                .format(driver))
3271 3272 3273 3274
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3288
    if _non_static_mode():
3289
        if in_dygraph_mode():
3290
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3291
                x, y, rcond, driver)
3292
        else:
3293
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3294
                x, y, 'rcond', rcond, 'driver', driver)
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3305 3306 3307 3308 3309 3310
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
    check_variable_and_dtype(y, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
3311 3312 3313 3314 3315 3316

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3317 3318 3319 3320 3321 3322 3323
    helper.append_op(type='lstsq',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Solution': solution,
3324
                         'Residuals': residuals,
3325 3326 3327 3328 3329 3330 3331
                         'Rank': rank,
                         'SingularValues': singular_values
                     },
                     attrs={
                         'rcond': rcond,
                         'driver': driver
                     })
3332 3333 3334 3335 3336 3337 3338 3339

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3340 3341 3342 3343


def corrcoef(x, rowvar=True, name=None):
    """
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
    if (c.ndim == 0):
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3402 3403
        return paddle.complex(paddle.clip(c.real(), -1, 1),
                              paddle.clip(c.imag(), -1, 1))
3404 3405 3406 3407
    else:
        c = paddle.clip(c, -1, 1)

    return c