loss.py 166.5 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
# TODO: define loss functions of neural network
17 18
import paddle
import paddle.fluid as fluid
19
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
20
from paddle.framework import core
21
from paddle.utils import deprecated
22 23

from ...fluid.data_feeder import check_variable_and_dtype
24
from ...fluid.framework import (
25
    _current_expected_place,
26 27
    _in_legacy_dygraph,
    _non_static_mode,
28 29
    _varbase_creator,
    in_dygraph_mode,
30
)
31 32 33 34
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers.nn import _elementwise_op_in_dygraph
from ...static import Variable
from ...tensor.manipulation import reshape
35

36 37
__all__ = []

38 39
kIgnoreIndex = -100

40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
103 104 105 106 107 108

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
109 110
        label, axis=reduce_dim
    )
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
153
        return _C_ops.log_loss(input, label, epsilon)
154 155 156 157 158 159 160

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

161 162 163 164 165 166
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
167 168 169
    return loss


170 171 172 173 174 175 176 177 178
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
179 180
    r"""

181 182
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
183 184 185 186 187 188
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

189 190 191
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
192 193 194 195 196 197 198
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
199
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
200 201 202 203

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
204
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
205 206 207 208

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
209 210 211
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
212 213 214 215 216 217

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
218 219 220
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
221 222 223 224 225
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
226
                                      if :attr:`soft_label` is set to :attr:`False`.
227 228 229
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
230 231 232
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
233 234 235 236 237
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
238
        axis (int, optional): The index of dimension to perform softmax calculations. It
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
254 255 256 257 258

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
259
            print(out)
260 261
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
262 263 264
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
265
            softmax, backprop, loss = _legacy_C_ops.softmax_with_cross_entropy(
266 267 268 269 270 271 272 273 274 275 276
                logits,
                label,
                'soft_label',
                soft_label,
                'ignore_index',
                ignore_index,
                'numeric_stable_mode',
                numeric_stable_mode,
                'axis',
                axis,
            )
277 278
        else:
            if in_dygraph_mode():
279
                softmax, loss = _C_ops.cross_entropy_with_softmax(
280 281 282 283 284 285 286 287
                    logits,
                    label,
                    soft_label,
                    True,
                    numeric_stable_mode,
                    ignore_index,
                    axis,
                )
288
            if _in_legacy_dygraph():
289
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
290 291 292 293 294 295 296 297 298 299 300
                    logits,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    numeric_stable_mode,
                    'axis',
                    axis,
                )
301 302 303 304 305 306 307 308 309
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
310
        'axis': axis,
311 312 313 314 315 316 317 318 319
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
320 321 322 323 324 325
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits, 'Label': label},
        outputs=outputs,
        attrs=attrs,
    )
326 327 328 329 330 331 332 333

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
334 335
    """

336 337 338
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
339

340 341
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
342

343
    Args:
344
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
345
                        the data type is float32 or float64.
346
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
347 348 349 350
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

351

352 353
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
354

355 356 357
    Examples:

      .. code-block:: python
358

359
          import paddle
360

361
          DATATYPE = "float32"
362

363 364 365
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
366

367 368
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
369

370
    """
371 372 373 374 375 376 377 378 379
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
380 381 382 383 384 385
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

386 387 388
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
389 390
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

391 392 393
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
394 395
    l2loss = l2loss * Beta * l2_reg

396 397 398 399 400 401
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
425 426
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
427 428 429 430 431 432 433 434 435 436 437 438 439

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
440
    if in_dygraph_mode():
441 442
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
443 444
        return square_out
    elif _in_legacy_dygraph():
445 446
        minus_out = _legacy_C_ops.elementwise_sub(input, label)
        square_out = _legacy_C_ops.square(minus_out)
447 448
        return square_out

449 450 451 452 453 454
    check_variable_and_dtype(
        input, "input", ['float32', 'float64'], 'square_error_cost'
    )
    check_variable_and_dtype(
        label, "label", ['float32', 'float64'], 'square_error_cost'
    )
455 456
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
457 458 459 460 461
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input], 'Y': [label]},
        outputs={'Out': [minus_out]},
    )
462 463

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
464 465 466
    helper.append_op(
        type='square', inputs={'X': [minus_out]}, outputs={'Out': [square_out]}
    )
467 468 469
    return square_out


470 471 472 473 474 475 476 477
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
511 512 513
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

552 553 554 555 556 557
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
558 559
        input = erased_input

560 561 562 563 564 565
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
566 567
        label = erased_label

Z
zhiboniu 已提交
568
    if in_dygraph_mode():
569 570 571
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
572

573 574 575 576 577 578 579 580
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
581 582 583 584 585 586
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
587 588 589 590

    return edit_distance_out, sequence_num


591 592 593
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
594
    """
学渣戊's avatar
学渣戊 已提交
595
    Measure the binary_cross_entropy loss between input predictions ``input``
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
644
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
645 646 647 648 649 650 651
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

652 653
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
654
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
655
            print(output)  # [0.65537095]
656 657 658 659 660

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
661 662 663
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
664

J
Jiabin Yang 已提交
665
    if in_dygraph_mode():
666
        out = _C_ops.bce_loss(input, label)
667
        if weight is not None:
668
            out = _C_ops.multiply(out, weight, 'axis', -1)
669 670

        if reduction == 'sum':
671
            return _C_ops.sum(out, [], None, False)
672

673
        elif reduction == 'mean':
674
            return _C_ops.mean_all(out)
675 676 677
        else:
            return out
    else:
J
Jiabin Yang 已提交
678
        if _in_legacy_dygraph():
679
            out = _legacy_C_ops.bce_loss(input, label)
J
Jiabin Yang 已提交
680
            if weight is not None:
681
                out = _legacy_C_ops.elementwise_mul(out, weight, 'axis', -1)
J
Jiabin Yang 已提交
682
            if reduction == 'sum':
683 684 685
                return _legacy_C_ops.reduce_sum(
                    out, 'dim', [0], 'keep_dim', False, "reduce_all", True
                )
J
Jiabin Yang 已提交
686
            elif reduction == 'mean':
687
                return _legacy_C_ops.mean(out)
J
Jiabin Yang 已提交
688 689 690
            else:
                return out
        else:
691 692 693 694 695 696
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'binary_cross_entropy'
            )
            check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'binary_cross_entropy'
            )
J
Jiabin Yang 已提交
697 698 699 700

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
701 702 703 704 705 706 707 708
            helper.append_op(
                type='bce_loss',
                inputs={
                    'X': [input],
                    'Label': [label],
                },
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
709 710 711 712 713 714 715

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
716 717
                        "The weight is not a Tensor, please convert to Tensor."
                    )
J
Jiabin Yang 已提交
718 719 720 721 722 723 724

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
725 726


727 728 729
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
730
    r"""
学渣戊's avatar
学渣戊 已提交
731
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
732 733 734 735 736 737 738

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
739
    Firstly, calculate loss function as follows:
740 741

    .. math::
742
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
743

744
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
745 746

    .. math::
747
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
748

N
Noel 已提交
749
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
750 751 752
    we reformulate the loss as follows:

    .. math::
753
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
754

学渣戊's avatar
学渣戊 已提交
755
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
756 757 758 759
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
760 761
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
790
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
791 792 793 794 795 796 797
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
798

799 800
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
801
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
802
            print(output)  # [0.45618808]
803 804 805 806 807 808

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
809 810
            % reduction
        )
811

812
    if in_dygraph_mode():
813 814 815
        one = _C_ops.full(
            [1],
            float(1.0),
816
            logit.dtype,
817 818 819 820 821
            _current_expected_place(),
        )
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
822
        if pos_weight is not None:
823
            log_weight = _C_ops.add(
824 825
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
826
            out = _C_ops.multiply(out, log_weight)
827
        if weight is not None:
828
            out = _C_ops.multiply(out, weight)
829 830

        if reduction == "sum":
831
            return _C_ops.sum(out, [], None, False)
832
        elif reduction == "mean":
833
            return _C_ops.mean_all(out)
H
hong 已提交
834
        else:
835 836 837
            return out
    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
838 839 840 841 842 843 844 845 846 847 848 849 850
        _legacy_C_ops.fill_constant(
            one,
            'value',
            float(1.0),
            'force_cpu',
            False,
            'dtype',
            one.dtype,
            'str_value',
            '1.0',
            'shape',
            [1],
        )
851
        out = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
852
        if pos_weight is not None:
853 854
            log_weight = _legacy_C_ops.elementwise_add(
                _legacy_C_ops.elementwise_mul(
855 856 857 858
                    label, _legacy_C_ops.elementwise_sub(pos_weight, one)
                ),
                one,
            )
859
            out = _legacy_C_ops.elementwise_mul(out, log_weight)
860
        if weight is not None:
861
            out = _legacy_C_ops.elementwise_mul(out, weight)
862 863

        if reduction == "sum":
864
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
865
        elif reduction == "mean":
866
            return _legacy_C_ops.mean(out)
867 868 869
        else:
            return out

870 871 872 873 874 875 876 877 878 879 880 881
    check_variable_and_dtype(
        logit,
        'logit',
        ['float32', 'float64'],
        'binary_cross_entropy_with_logits',
    )
    check_variable_and_dtype(
        label,
        'label',
        ['float32', 'float64'],
        'binary_cross_entropy_with_logits',
    )
882 883 884 885
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

886 887 888 889 890 891 892 893 894
    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    out = helper.create_variable_for_type_inference(dtype=logit.dtype)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": logit, "Label": label},
        attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
        outputs={"Out": out},
895
    )
896

Z
zhiboniu 已提交
897
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
898
    if pos_weight is not None:
899 900 901 902 903 904
        check_variable_and_dtype(
            pos_weight,
            'pos_weight',
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
905
        log_weight = paddle.add(
906 907 908 909 910
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one
        )
        pos_weight_name = (
            name if reduction == 'none' and weight is None else None
        )
911 912 913
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
914 915 916 917 918 919
        check_variable_and_dtype(
            weight,
            'weight',
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
920 921 922 923 924 925 926 927 928 929
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


930 931 932 933 934 935 936 937 938 939 940
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
941 942 943
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
944

945 946 947
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
948 949

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
950 951
    represents the number of classes or the size of word dict.

952 953 954 955
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
1002 1003 1004 1005 1006
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
1007 1008 1009
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
1010 1011 1012 1013
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
1014 1015

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
1016 1017 1018 1019
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
1020
    """
1021
    if in_dygraph_mode():
1022
        out, _, _ = _C_ops.hsigmoid_loss(
1023 1024
            input,
            label,
1025 1026
            weight,
            bias,
1027 1028 1029 1030 1031 1032
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
1033 1034 1035
        return out
    elif _in_legacy_dygraph():
        out, _, _ = _legacy_C_ops.hierarchical_sigmoid(
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            input,
            weight,
            label,
            path_table,
            path_code,
            bias,
            'num_classes',
            num_classes,
            'is_sparse',
            is_sparse,
            'remote_prefetch',
            is_sparse,
        )
1049 1050
        return out

1051 1052 1053
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
    )
1054
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
1055 1056 1057
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
    )
1058
    if bias is not None:
1059 1060 1061
        check_variable_and_dtype(
            bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
        )
1062
    if path_table is not None:
1063 1064 1065
        check_variable_and_dtype(
            path_table, 'path_table', ['int64'], 'hsigmoid_loss'
        )
1066
    if path_code is not None:
1067 1068 1069
        check_variable_and_dtype(
            path_code, 'path_code', ['int64'], 'hsigmoid_loss'
        )
1070 1071 1072 1073

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
1074
        "remote_prefetch": is_sparse,
1075 1076 1077 1078 1079 1080 1081 1082
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
1083
        "Label": label,
1084 1085 1086 1087 1088 1089 1090
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

1091 1092 1093
    helper.append_op(
        type="hierarchical_sigmoid", inputs=inputs, outputs=outputs, attrs=attrs
    )
1094 1095 1096
    return out


1097
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1098
    r"""
1099
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1100 1101 1102 1103 1104 1105
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1106
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1107 1108


1109
    where :math:`z_i` is given by:
1110 1111 1112

    .. math::

1113
        \mathop{z_i} = \left\{\begin{array}{rcl}
1114 1115 1116
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1130
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1131 1132 1133
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1134
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1135 1136

    Returns:
1137
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1138 1139 1140 1141 1142 1143

    Examples:
        .. code-block:: python

            import paddle

1144 1145
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1146
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1147
            print(output)
1148
            # [0.068004]
1149
    """
1150 1151 1152 1153 1154 1155
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss'
    )
1156

1157
    if in_dygraph_mode():
1158
        out, residual = _C_ops.huber_loss(input, label, delta)
1159 1160 1161
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1162 1163
            dtype=helper.input_dtype()
        )
1164
        out = helper.create_variable_for_type_inference(
1165 1166 1167 1168 1169 1170 1171 1172
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1173 1174 1175 1176

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1177 1178
            " 'none', but received %s, which is not allowed." % reduction
        )
1179 1180 1181
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1182
        return paddle.mean(out)
1183
    elif reduction == 'sum':
1184
        return paddle.sum(out)
1185 1186


1187 1188 1189
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1190
    r"""
1191

1192
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1193

1194
    .. math::
1195
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1212
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1213 1214 1215 1216
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1217
    Returns:
1218
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1219 1220 1221 1222 1223

    Examples:

        .. code-block:: python

1224 1225
            import paddle

Z
Zhong Hui 已提交
1226 1227 1228
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1229
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1230
            print(loss) # [0.75]
1231
    """
1232 1233 1234
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1235 1236
            "received %s, which is not allowed." % reduction
        )
1237
    if in_dygraph_mode():
1238 1239
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1240 1241
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1242 1243
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1244
        if reduction == 'sum':
1245
            return _C_ops.sum(out, [], None, False)
1246
        elif reduction == 'mean':
1247
            return _C_ops.mean_all(out)
1248 1249
        return out
    elif _in_legacy_dygraph():
1250 1251
        out = _legacy_C_ops.elementwise_sub(other, input)
        out = _legacy_C_ops.elementwise_mul(out, label)
1252 1253
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1254 1255
            out = _legacy_C_ops.elementwise_add(out, margin)
        out = _legacy_C_ops.relu(out)
1256
        if reduction == 'sum':
1257
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
1258
        elif reduction == 'mean':
1259
            return _legacy_C_ops.mean(out)
1260 1261 1262
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
1263 1264 1265 1266 1267 1268 1269 1270 1271
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss'
    )
    check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'margin_rank_loss'
    )
1272

1273 1274 1275
    out = paddle.subtract(input, other)
    neg_label = paddle.neg(label)
    out = paddle.multiply(neg_label, out)
1276 1277 1278

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1279
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1280 1281 1282 1283 1284
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
1285 1286 1287
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out}
        )
1288 1289 1290 1291
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
1292 1293 1294 1295 1296 1297
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs,
        )
1298 1299 1300
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
1301 1302 1303 1304 1305 1306
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={},
        )
1307 1308 1309
        return result_out


1310
def l1_loss(input, label, reduction='mean', name=None):
1311
    r"""
1312

1313
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1314

1315
    If `reduction` set to ``'none'``, the loss is:
1316 1317

    .. math::
1318
        Out = \lvert input - label \rvert
1319

1320
    If `reduction` set to ``'mean'``, the loss is:
1321 1322

    .. math::
1323
        Out = MEAN(\lvert input - label \rvert)
1324

1325
    If `reduction` set to ``'sum'``, the loss is:
1326 1327

    .. math::
1328
        Out = SUM(\lvert input - label \rvert)
1329

1330

1331
    Parameters:
N
Noel 已提交
1332 1333
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1334
        reduction (str, optional): Indicate the reduction to apply to the loss,
1335
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1336 1337 1338
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1339 1340
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1341

1342
    Returns:
1343
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1344
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1345
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1346

1347 1348
    Examples:
        .. code-block:: python
N
Noel 已提交
1349

1350
            import paddle
1351

1352 1353
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1354

1355
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1356 1357 1358
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
1359

1360
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1361 1362 1363 1364
            print(l1_loss)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
1365

1366
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1367 1368 1369
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
1370

1371 1372 1373 1374
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1375 1376
            "received %s, which is not allowed." % reduction
        )
1377

1378
    if in_dygraph_mode():
1379 1380
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1381
        if reduction == 'mean':
1382
            return _C_ops.mean_all(unreduced)
1383
        elif reduction == 'sum':
1384
            return _C_ops.sum(unreduced, [], None, False)
1385 1386
        else:
            return unreduced
1387
    elif _in_legacy_dygraph():
1388 1389 1390
        unreduced = _elementwise_op_in_dygraph(
            input, label, axis=-1, act='abs', op_name='elementwise_sub'
        )
1391
        if reduction == 'mean':
1392
            return _legacy_C_ops.mean(unreduced)
1393
        elif reduction == 'sum':
1394 1395 1396
            return _legacy_C_ops.reduce_sum(
                unreduced, 'dim', [0], 'keep_dim', False, 'reduce_all', True
            )
1397 1398 1399
        else:
            return unreduced

1400 1401 1402 1403 1404 1405
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
    )
1406 1407

    if reduction == 'sum':
1408
        unreduced = paddle.abs(paddle.subtract(x=input, y=label))
1409 1410
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1411
        unreduced = paddle.abs(paddle.subtract(x=input, y=label))
1412 1413
        return paddle.mean(unreduced, name=name)
    else:
1414
        return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1415 1416 1417 1418 1419


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1420 1421
    """
    This api returns negative log likelihood.
1422 1423
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1435 1436
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1451

1452 1453 1454 1455
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1456 1457 1458 1459 1460
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1461
                log_out = log_softmax(input)
1462
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1463
                result = nll_loss(log_out, label)
1464
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1465 1466 1467 1468
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1469 1470
            "'none', but received %s, which is not allowed." % reduction
        )
1471 1472 1473 1474

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1475
        raise ValueError(
1476 1477
            'Expected 2 or more dimensions (got {})'.format(input_dims)
        )
1478 1479
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1480 1481
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1482 1483
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1484
            out_shape = [n] + input_shape[2:]
1485 1486 1487
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1488
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1489
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1490
        return out
1491
    elif _in_legacy_dygraph():
1492
        if input_dims != 2 and input_dims != 4:
1493 1494 1495
            input, _ = _legacy_C_ops.reshape2(
                input, None, 'shape', [n, c, 1, -1]
            )
1496
            label, _ = _legacy_C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1497
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507
        out, total_weight = _legacy_C_ops.nll_loss(
            input,
            label,
            weight,
            'ignore_index',
            ignore_index,
            'reduction',
            reduction,
        )
1508
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1509
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', out_shape)
1510 1511 1512 1513 1514 1515 1516 1517 1518
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1519 1520
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

1531 1532 1533
    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
    )
1534 1535 1536 1537
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1538 1539


1540
def kl_div(input, label, reduction='mean', name=None):
1541
    r"""
1542
    Calculate the Kullback-Leibler divergence loss
1543 1544 1545 1546 1547 1548 1549
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1550
    Here :math:`x` is input and :math:`y` is label.
1551

1552
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1553

1554
    If `reduction` is ``'mean'``, the output loss is the shape of [1], and the output is the average of all losses.
1555

1556
    If `reduction` is ``'sum'``, the output loss is the shape of [1], and the output is the sum of all losses.
1557

1558
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1559 1560

    Args:
1561
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1562
            any number of additional dimensions. It's data type should be float32, float64.
1563
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1564 1565 1566 1567 1568 1569 1570
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1571
        name(str, optional): Name for the operation (optional, default is None). For more information,
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1582

1583
            shape = (5, 20)
1584 1585
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1586

L
LielinJiang 已提交
1587
            # 'batchmean' reduction, loss shape will be [1]
1588
            pred_loss = F.kl_div(x, target, reduction='batchmean')
L
LielinJiang 已提交
1589
            # shape=[1]
1590

1591
            # 'mean' reduction, loss shape will be [1]
1592
            pred_loss = F.kl_div(x, target, reduction='mean')
1593 1594 1595
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1596
            pred_loss = F.kl_div(x, target, reduction='sum')
1597 1598 1599
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1600
            pred_loss = F.kl_div(x, target, reduction='none')
1601 1602 1603
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1604
    # ugly type promotion
1605 1606 1607 1608
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1609
        input = paddle.cast(input, 'float64')
1610 1611 1612 1613
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1614
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1615

1616
    if in_dygraph_mode():
1617
        out = _C_ops.kldiv_loss(input, label, 'none')
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
    elif _in_legacy_dygraph():
1628
        out = _legacy_C_ops.kldiv_loss(input, label, 'reduction', 'none')
1629 1630 1631 1632 1633 1634 1635 1636
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1637 1638 1639 1640
        return out

    helper = LayerHelper('kl_div', **locals())

1641 1642
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1643 1644 1645
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
1646 1647 1648 1649 1650 1651
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input, 'Target': label},
        outputs={'Loss': loss},
        attrs={'reduction': 'none'},
    )
1652 1653 1654 1655 1656 1657 1658 1659

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1660 1661 1662
    return loss


1663
def mse_loss(input, label, reduction='mean', name=None):
1664
    r"""
1665
    Accept input predications and label and returns the mean square error.
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1695
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1696

1697 1698 1699
    Examples:

        .. code-block:: python
1700

1701 1702
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1703 1704
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1705
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1706
            print(output)
1707 1708 1709 1710 1711 1712 1713
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1714 1715
            "but received {}.".format(reduction)
        )
1716

Z
zhiboniu 已提交
1717
    if not in_dynamic_mode():
1718 1719 1720 1721 1722 1723
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1724 1725

    if reduction == 'none':
1726
        return paddle.square(paddle.subtract(input, label), name=name)
1727
    elif reduction == 'mean':
1728 1729 1730
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1731
    else:
1732 1733 1734
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1735 1736


1737 1738 1739 1740 1741 1742 1743 1744 1745
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1746 1747
    """

1748 1749 1750
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1751 1752 1753
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1754
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1755 1756 1757 1758 1759
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
H
Hui Zhang 已提交
1760
        norm_by_times (bool, default False): Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1761

1762 1763
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1782
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1795 1796 1797 1798 1799 1800
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1801

1802 1803 1804 1805
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1806
                reduction='none')
1807 1808 1809
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1810

1811 1812 1813 1814 1815
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1816 1817 1818
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1819 1820 1821

    """

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
        if in_dygraph_mode():
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
        if _non_static_mode():
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            grad, loss_out = _legacy_C_ops.warpctc(
                input,
                label,
                input_length,
                label_length,
                'blank',
                blank,
                'norm_by_times',
                norm_by_times,
            )
            return loss_out
        helper = LayerHelper('warpctc', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warpctc"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
        this_inputs = {'Logits': [input], 'Label': [label]}
        if input_length is not None and label_length is not None:
            check_variable_and_dtype(
                input_length, 'LogitsLength', ['int64'], "warpctc"
            )
            check_variable_and_dtype(
                label_length, 'LabelLength', ['int64'], "warpctc"
            )
            this_inputs['LogitsLength'] = [input_length]
            this_inputs['LabelLength'] = [label_length]

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warpctc',
            inputs=this_inputs,
            outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
            attrs={
                'blank': blank,
                'norm_by_times': norm_by_times,
            },
        )
        return loss_out

    loss_out = warpctc(
1886 1887
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1888

Z
zhiboniu 已提交
1889
    loss_out = paddle.squeeze(loss_out, [-1])
1890 1891
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1892
        loss_out = paddle.mean(loss_out / label_lengths)
1893 1894 1895
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax, is the longest length of input logit sequence. The data type should be float32 or float64.
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``logprobs``.

    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle
            import functools

            fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        [4.49566677])
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
        if in_dygraph_mode():
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
2020 2021


2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
2033
    r"""
2034 2035
    .. math::

2036
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
2037

2038
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
2039 2040 2041 2042
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
2043 2044 2045 2046
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
2047 2048

    Args:
G
Guoxia Wang 已提交
2049
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
2050
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
2051 2052 2053 2054 2055
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
2056
        group (Group, optional): The group instance return by paddle.distributed.new_group
2057 2058
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2059 2060 2061 2062 2063 2064 2065 2066
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
2067 2068 2069 2070 2071 2072
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
            the shape is ``[1]``.
2073 2074 2075 2076

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2077
        :name: code-example1
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
2126
        :name: code-example2
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

2173
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2217
    if not (group is False or group is None or hasattr(group, 'is_member')):
2218 2219
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2220 2221 2222 2223
             (got group: {})'.format(
                group
            )
        )
2224 2225 2226
        return

    if hasattr(group, 'is_member') and not group.is_member():
2227 2228
        return

2229
    ring_id = 0
2230 2231
    rank = 0
    nranks = 1
2232
    if group is not False:
2233 2234 2235 2236
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2237 2238 2239 2240 2241
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2242
            nranks = parallel_env.world_size if group is None else group.nranks
2243 2244 2245 2246 2247

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2248
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2249 2250 2251 2252
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
2253 2254 2255
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2256
    if in_dygraph_mode():
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2269 2270 2271 2272 2273 2274 2275 2276
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
2277
    elif _in_legacy_dygraph():
2278
        softmax, loss = _legacy_C_ops.margin_cross_entropy(
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
            logits,
            label,
            'ring_id',
            ring_id,
            'rank',
            rank,
            'nranks',
            nranks,
            'margin1',
            margin1,
            'margin2',
            margin2,
            'margin3',
            margin3,
            'scale',
            scale,
            'return_softmax',
            return_softmax,
        )
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    check_variable_and_dtype(
        logits,
        'logits',
        ['float16', 'float32', 'float64'],
        'margin_cross_entropy',
    )
    check_variable_and_dtype(
        label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
    )

    helper.append_op(
        type=op_type,
        inputs={'Logits': logits, 'Label': label},
        outputs={'Softmax': softmax, 'Loss': loss},
        attrs={
            'return_softmax': return_softmax,
            'ring_id': ring_id,
            'rank': rank,
            'nranks': nranks,
            'margin1': margin1,
            'margin2': margin2,
            'margin3': margin3,
            'scale': scale,
        },
    )
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


2349 2350 2351 2352
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2367
    r"""
2368 2369
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2370 2371 2372 2373 2374 2375
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2376 2377 2378
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2405 2406 2407
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2408 2409 2410 2411 2412
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2413
                                      if :attr:`soft_label` is set to :attr:`False`.
2414 2415 2416
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2417 2418 2419
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2420 2421 2422 2423 2424
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2425
        axis (int, optional): The index of dimension to perform softmax calculations. It
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2441 2442 2443 2444 2445

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2446
            print(out)
2447 2448
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2449
    """
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2472
    r"""
2473

2474
    By default, the cross entropy loss function is implemented using softmax. This function
2475 2476
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2477

2478
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2479

2480
    By default, calculate the mean of the result, and you can also affect
2481
    the default behavior by using the reduction parameter. Please refer to the part of
2482
    parameters for details.
2483

2484
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2485
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2486
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2487

2488
    The calculation includes the following two steps.
2489

2490
    - **1.softmax cross entropy**
2491

2492
        1. Hard label (each sample can only be assigned into one category)
2493

2494
        1.1. when use_softmax=True
2495

2496 2497
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2498

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2540
                \\loss_j=loss_j*weight[label_j]
2541

2542

2543 2544 2545 2546 2547 2548 2549
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2550
            2.1 if the ``reduction`` parameter is ``none``
2551 2552 2553

                Return the previous result directly

2554
            2.2 if the ``reduction`` parameter is ``sum``
2555 2556 2557 2558 2559 2560

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2561 2562
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2563

2564
            2.3.1. If the  ``weight``  parameter is ``None``
2565 2566 2567

                   Return the average value of the previous results

2568
            .. math::
2569 2570 2571 2572 2573 2574 2575 2576
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2577
            .. math::
2578
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2579 2580 2581

            2. Soft labels (soft_label = True)

2582
            .. math::
2583
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2584 2585


2586
    Parameters:
2587
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2588

2589
            Note:
2590
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2591
                2. when use_softmax=False, it expects the output of softmax operator.
2592

2593
        label (Tensor):
2594 2595 2596 2597
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2598
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2599 2600
            and the sum of the labels for each sample should be 1.

2601
        weight (Tensor, optional): a manual rescaling weight given to each class.
2602
            If given, has to be a Tensor of size C and the data type is float32, float64.
2603
            Default is ``'None'`` .
2604
        ignore_index (int64, optional): Specifies a target value that is ignored
2605 2606
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2607
            Default is ``-100`` .
2608
        reduction (str, optional): Indicate how to average the loss by batch_size,
2609 2610
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2611
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2612 2613
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2614 2615
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2616 2617
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2618
            Default is ``-1`` .
2619
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2620
            Default is ``True``.
2621
        name (str, optional): The name of the operator. Default is ``None`` .
2622
            For more information, please refer to :ref:`api_guide_Name` .
2623 2624 2625

    Returns:

2626 2627
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2628

2629
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2630

2631
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2632

2633
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2634

2635
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2636

2637
    Examples:
2638
        .. code-block:: python
2639 2640

            # hard labels
2641 2642 2643 2644 2645
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2646
            input =  paddle.rand([N, C], dtype='float64')
2647
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2648 2649
            weight = paddle.rand([C], dtype='float64')

2650 2651 2652
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
2653 2654 2655 2656 2657
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
2658 2659

        .. code-block:: python
2660 2661

            # soft labels
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2675 2676 2677 2678 2679 2680 2681 2682 2683
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
C
Chen Long 已提交
2684

2685 2686 2687 2688
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2689 2690
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2691 2692
            % reduction
        )
2693
    if ignore_index > 0 and soft_label:
2694 2695
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2696 2697 2698
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2699

2700
    input_dims = len(list(input.shape))
2701 2702 2703
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2704 2705
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2706
        raise ValueError(
2707
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
2708 2709 2710 2711
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
2712 2713
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2714

2715
    if in_dygraph_mode():
2716
        if not soft_label:
2717 2718 2719
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
F
fwenguang 已提交
2720
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2721
            if not soft_label:
2722
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2736
            else:
2737
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2751
        else:
2752 2753 2754
            _, out = _C_ops.cross_entropy_with_softmax(
                input, label, soft_label, use_softmax, True, ignore_index, axis
            )
2755 2756 2757 2758

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2759
            if soft_label:
2760 2761 2762 2763
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2764 2765 2766 2767 2768 2769
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2770 2771 2772 2773
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2774
                out = _C_ops.multiply(out, weight_gather_reshape)
2775 2776 2777 2778 2779
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2792
                    # TODO: Temporarily use squeeze instead of squeeze_
2793 2794 2795
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2796
                if axis != -1 and axis != valid_label.ndim - 1:
2797 2798 2799 2800 2801 2802 2803 2804 2805
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2806
                    weight_gather = _C_ops.gather_nd(
2807 2808
                        weight, valid_label.transpose(temp_perm)
                    )
2809
                else:
2810
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2811 2812 2813
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2814
                input_shape = list(label.shape)
2815 2816 2817
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2818
                out = paddle.cast(out, weight_gather_reshape.dtype)
2819
                out = _C_ops.multiply(out, weight_gather_reshape)
2820 2821 2822 2823 2824

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2825
            return _C_ops.sum(out, [], None, False)
2826 2827 2828 2829 2830 2831 2832
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2833 2834 2835
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2836
                out_sum = _C_ops.sum(out, [], None, False)
2837 2838 2839 2840 2841
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2842
                    count = _C_ops.sum(mask, [], None, False)
2843 2844 2845
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2846 2847 2848
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2849
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2850 2851 2852
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2853
                out_sum = _C_ops.sum(out, [], None, False)
2854 2855 2856
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2857 2858
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2859
                return _C_ops.mean_all(out)
2860 2861 2862 2863 2864 2865 2866

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

    elif _in_legacy_dygraph():
2867
        if not soft_label:
2868 2869 2870
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2871 2872 2873
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
2874 2875 2876
                raise ValueError(
                    "Target {} is out of lower bound.".format(label_min.item())
                )
2877
            if label_max >= input.shape[axis]:
2878 2879 2880
                raise ValueError(
                    "Target {} is out of upper bound.".format(label_max.item())
                )
2881
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2882
            if not soft_label:
2883
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2897
            else:
2898
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2912
        else:
2913
            _, out = _legacy_C_ops.softmax_with_cross_entropy(
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
                input,
                label,
                'soft_label',
                soft_label,
                'ignore_index',
                ignore_index,
                'numeric_stable_mode',
                True,
                'axis',
                axis,
                'use_softmax',
                use_softmax,
            )
2927

2928
        if weight is not None:
2929

H
HydrogenSulfate 已提交
2930
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2931
            if soft_label:
2932
                # chajchaj:
H
HydrogenSulfate 已提交
2933
                # weight's shape is C, where C is class num.
2934 2935
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2936 2937 2938 2939 2940 2941
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2942 2943 2944 2945
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2946
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2947 2948

            else:
2949 2950 2951 2952
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
H
HydrogenSulfate 已提交
2965
                    # TODO: Temporarily use squeeze instead of squeeze_
2966 2967 2968
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2969
                if axis != -1 and axis != valid_label.ndim - 1:
2970 2971 2972 2973 2974 2975 2976 2977 2978
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2979
                    weight_gather = _legacy_C_ops.gather_nd(
2980 2981
                        weight, valid_label.transpose(temp_perm)
                    )
2982
                else:
2983 2984
                    weight_gather = _legacy_C_ops.gather_nd(weight, valid_label)
                weight_gather = _legacy_C_ops.elementwise_mul(
2985 2986
                    weight_gather, ignore_weight_mask
                )
2987
                input_shape = list(label.shape)
2988 2989 2990
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2991
                out = paddle.cast(out, weight_gather_reshape.dtype)
2992
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2993

2994
        if reduction == "sum":
H
HydrogenSulfate 已提交
2995
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2996 2997
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2998
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
2999
        elif reduction == "mean":
H
HydrogenSulfate 已提交
3000 3001 3002 3003 3004 3005
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
3006 3007 3008
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
3009
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
3010 3011 3012
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
3013
                if weight is None:
3014
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
3015
                    count = _legacy_C_ops.reduce_sum(mask, 'reduce_all', True)
3016
                    ret = out_sum / (count + (count == 0.0))
3017 3018
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
3019
                    weight_ignored = _legacy_C_ops.elementwise_mul(
3020 3021
                        mask, weight_gather_reshape
                    )
3022
                    weight_sum = _legacy_C_ops.reduce_sum(
3023 3024
                        weight_ignored, 'reduce_all', True
                    )
3025
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
3026 3027
                return ret
            elif weight is not None:
3028
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
3029 3030 3031
                total_weight = _legacy_C_ops.reduce_sum(
                    weight_gather_reshape, 'reduce_all', True
                )
3032
                return out_sum / (total_weight + (total_weight == 0.0))
3033
            else:
3034
                return _legacy_C_ops.mean(out)
3035
        else:
3036 3037
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
3038
            return out
3039

3040
    check_variable_and_dtype(
3041 3042 3043 3044 3045 3046 3047 3048
        input,
        'input',
        ['float16', 'float32', 'float64'],
        'softmax_cross_entropy',
    )
    check_variable_and_dtype(
        label,
        'label',
3049
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
3050 3051
        'softmax_cross_entropy',
    )
3052 3053 3054 3055 3056
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
3057
        'use_softmax': use_softmax,
3058 3059 3060 3061
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
3062 3063 3064 3065 3066

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
3067 3068 3069 3070 3071 3072
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': input, 'Label': label},
        outputs=outputs,
        attrs=attrs,
    )
3073

3074
    if weight is not None:
3075 3076 3077
        check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'], 'softmax_cross_entropy'
        )
3078
        weight_name = name if reduction == 'none' else None
3079
        if soft_label:
3080
            # chajchaj:
H
HydrogenSulfate 已提交
3081
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
3082 3083 3084
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
3085 3086 3087 3088 3089 3090
            weight_gather = paddle.matmul(
                x=paddle.cast(label, weight.dtype),
                y=weight,
                transpose_x=False,
                transpose_y=True,
            )
3091 3092 3093 3094 3095

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
3096
            if input.shape[axis] != weight.shape[-1]:
3097 3098 3099 3100 3101 3102 3103
                raise ValueError(
                    "input's class_dimension({}) must equal to "
                    "weight's class_dimension({}) "
                    "when weight is provided".format(
                        input.shape[axis], weight.shape[-1]
                    )
                )
H
HydrogenSulfate 已提交
3104

H
HydrogenSulfate 已提交
3105
            valid_label = paddle.multiply(
3106 3107 3108 3109 3110 3111 3112 3113 3114
                paddle.cast(label != ignore_index, dtype=label.dtype), label
            )
            ignore_weight_mask = paddle.cast(
                (label != ignore_index), input.dtype
            )
            if (
                ignore_weight_mask.ndim > 1
                and ignore_weight_mask.shape[axis] == 1
            ):
3115
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
3116
            if axis != -1 and axis != valid_label.ndim - 1:
3117 3118 3119 3120 3121 3122 3123
                temp_perm = (
                    list(range(axis % valid_label.ndim))
                    + list(
                        range((axis % valid_label.ndim + 1), valid_label.ndim)
                    )
                    + [axis % valid_label.ndim]
                )
3124
                weight_gather = paddle.gather_nd(
3125 3126
                    weight, paddle.transpose(valid_label, temp_perm)
                )
3127 3128
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
3129 3130
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

3131 3132
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
3133
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
3134

3135 3136 3137
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
3138
        if ignore_index >= 0:
3139
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
3140 3141 3142
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
3143 3144
            mask = label != ignore_index
            if weight is None:
3145 3146
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
3147
                ret = out_sum / (count + (count == 0.0))
3148 3149 3150 3151
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
3152
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
3153 3154
            return ret
        elif weight is not None:
3155 3156
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
3157
            return out_sum / (total_weight + (total_weight == 0.0))
3158 3159
        else:
            return paddle.mean(out, name=name)
3160

3161
    else:
3162 3163 3164
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

3165
        return out
3166 3167


3168 3169 3170 3171 3172 3173 3174 3175 3176
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
3177
    r"""
3178 3179 3180 3181 3182 3183
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

3184
    This operator measures focal loss function as follows:
3185 3186

    .. math::
3187
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
3188

3189
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
3190 3191 3192 3193 3194

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
3195
           Out = \frac{Out}{normalizer}
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
3213
            For object detection task, it is the number of positive samples.
3214 3215
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
3216
            it should be between 0 and 1.  Default value is set to 0.25.
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
3241
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
3242
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
3243
            print(output)  # [0.65782464]
3244 3245 3246 3247 3248 3249

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
3250 3251
            % reduction
        )
3252 3253

    if normalizer is not None:
3254 3255 3256 3257 3258 3259
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
3260 3261 3262 3263
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
3264 3265 3266 3267
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
                    normalizer_dims
                )
            )
3268

3269 3270
    if in_dygraph_mode():
        place = _current_expected_place()
3271
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
3272

3273 3274 3275
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
3276

3277
        pred = _C_ops.sigmoid(logit)
3278

3279 3280
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
3281 3282 3283 3284
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3285 3286

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3287 3288
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
3289 3290 3291 3292
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3293
        loss = _C_ops.multiply(alpha_t, loss)
3294 3295

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3296 3297
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3298 3299

        if normalizer is not None:
3300
            loss = _C_ops.divide(loss, normalizer)
3301 3302

        if reduction == "sum":
3303
            return _C_ops.sum(loss, [], None, False)
3304
        elif reduction == "mean":
3305
            return _C_ops.mean_all(loss)
3306 3307 3308 3309 3310

        return loss

    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
        _legacy_C_ops.fill_constant(
            one,
            'value',
            float(1.0),
            'force_cpu',
            False,
            'dtype',
            one.dtype,
            'str_value',
            '1.0',
            'shape',
            logit.shape,
        )
3324
        loss = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
3325

3326
        pred = _legacy_C_ops.sigmoid(logit)
3327

3328 3329 3330 3331
        p_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(pred, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, pred),
3332 3333 3334
                _legacy_C_ops.elementwise_sub(one, label),
            ),
        )
3335 3336

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3337 3338 3339 3340
        alpha_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(alpha, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, alpha),
3341 3342 3343
                _legacy_C_ops.elementwise_sub(one, label),
            ),
        )
3344
        loss = _legacy_C_ops.elementwise_mul(alpha_t, loss)
3345 3346

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3347
        gamma_t = _legacy_C_ops.elementwise_pow(
3348 3349
            _legacy_C_ops.elementwise_sub(one, p_t), gamma
        )
3350
        loss = _legacy_C_ops.elementwise_mul(gamma_t, loss)
3351 3352

        if normalizer is not None:
3353
            loss = _legacy_C_ops.elementwise_div(loss, normalizer)
3354 3355

        if reduction == "sum":
3356
            return _legacy_C_ops.reduce_sum(loss, 'reduce_all', True)
3357
        elif reduction == "mean":
3358
            return _legacy_C_ops.mean(loss)
3359 3360 3361

        return loss

3362 3363 3364 3365 3366 3367
    check_variable_and_dtype(
        logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
    )
3368 3369 3370 3371 3372

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
3373 3374
        logit, label, reduction='none', name=bce_name
    )
3375

Z
zhiboniu 已提交
3376
    pred = paddle.nn.functional.sigmoid(logit)
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
3395 3396


3397 3398 3399
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3400
    r"""
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3414

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3429

3430 3431 3432 3433 3434
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3435

3436 3437
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3438

3439 3440
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
            # Tensor([1.54908717])
Y
yangguohao 已提交
3453 3454 3455 3456
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3457 3458
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3459 3460

    if not (input.shape == label.shape):
3461 3462 3463 3464
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3465 3466

    if not _non_static_mode():
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3479

3480 3481 3482 3483
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3484 3485 3486

    if weight is not None:
        if not _non_static_mode():
3487 3488 3489 3490 3491 3492
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3505 3506
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3507
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3582 3583
            "but received {}.".format(reduction)
        )
3584

3585
    if not _non_static_mode():
3586 3587 3588 3589 3590 3591
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3592 3593

    zero_ = paddle.zeros([1], dtype=input.dtype)
3594 3595 3596
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3597 3598 3599 3600 3601 3602 3603

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3604 3605


3606 3607 3608
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3609
    r"""
3610
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3626 3627
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3628
                         Available dtypes are float32, float64.
3629
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3630
                         Available dtypes are float32, float64.
3631
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3669 3670
            "1D target tensor expected, multi-target not supported"
        )
3671 3672 3673 3674

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3675 3676
            "different sizes"
        )
3677 3678 3679 3680 3681 3682 3683 3684

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3685 3686
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3687
    if label.dtype not in [
3688 3689 3690 3691
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3715 3716


3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3746
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3762

3763 3764
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3765

Y
yangguohao 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3777

Y
yangguohao 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
3801 3802 3803 3804 3805
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3806 3807 3808 3809 3810
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3829 3830

    if not (input.shape == positive.shape == negative.shape):
3831 3832 3833 3834 3835
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3836

3837 3838 3839
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3840
        else paddle.nn.PairwiseDistance(2)
3841
    )
Y
yangguohao 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3853 3854
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3864 3865


3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3953 3954
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3955 3956 3957 3958 3959
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
3960 3961 3962 3963 3964 3965 3966 3967 3968
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3969 3970

    if not (input.shape == positive.shape == negative.shape):
3971 3972 3973 3974 3975
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3993 3994


3995 3996 3997 3998 3999 4000 4001 4002 4003
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
4066 4067
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
4068 4069

    if not _non_static_mode():
4070 4071 4072 4073 4074 4075
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
4076 4077 4078 4079
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
4080 4081 4082
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
4083 4084 4085 4086
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
        if not _non_static_mode():
4087 4088 4089
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
4090 4091 4092
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
4093 4094 4095 4096
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
4097 4098 4099
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
4100 4101 4102 4103 4104
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
4105
    else:
4106 4107 4108 4109 4110 4111 4112 4113 4114
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


4124 4125
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
4126

4127 4128 4129 4130 4131 4132 4133 4134
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

4135
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
4136
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
4137
            Available dtype is float32, float64.
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

4155
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [1].
4156 4157 4158 4159 4160 4161 4162 4163 4164

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
4165 4166 4167 4168 4169 4170 4171
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
4172 4173

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
4174 4175 4176 4177 4178 4179 4180
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
4181

4182 4183 4184 4185
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
4186 4187 4188
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
4189 4190 4191

    if not _non_static_mode():
        fluid.data_feeder.check_variable_and_dtype(
4192 4193 4194 4195 4196 4197 4198 4199
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
4200 4201

    if not (input.shape == label.shape):
4202
        raise ValueError("input's shape must equal to " "label's shape")
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out