loss.py 155.5 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
24
from ...tensor.manipulation import reshape
25
from ...fluid.layer_helper import LayerHelper
26
from ...fluid.framework import _varbase_creator
27
from ...static import Variable
28
from paddle.utils import deprecated
29
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
30
from paddle import in_dynamic_mode
Y
yangguohao 已提交
31
from paddle.framework import core, _non_static_mode
32
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode, _current_expected_place
33

34 35
__all__ = []

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
    assert len(input.shape) >= 2, \
        "The rank of input should be greater than or equal to 2."
83 84 85 86
    assert len(input.shape) == len(
        label.shape), ("The rank of input and label should be equal, "
                       "but received input: %d, label: %d." %
                       (len(input.shape), len(label.shape)))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    assert label.shape[-1] == 1, ("The last dimension of label should be 1, "
                                  "but received %d." % label.shape[-1])
    assert input.shape[:-1] == label.shape[:-1], (
        "All dimensions should be equal except the last one.")
    assert input.numel() > 0 and label.numel() > 0, \
        "Any dimension of input and label cannot be equal to 0."

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
        label, axis=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
142
        return _C_ops.log_loss(input, label, epsilon)
143 144 145 146 147 148 149

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

150 151 152 153 154 155 156
    helper.append_op(type='log_loss',
                     inputs={
                         'Predicted': [input],
                         'Labels': [label]
                     },
                     outputs={'Loss': [loss]},
                     attrs={'epsilon': epsilon})
157 158 159 160 161 162 163 164 165 166 167 168
    return loss


def fluid_softmax_with_cross_entropy(logits,
                                     label,
                                     soft_label=False,
                                     ignore_index=-100,
                                     numeric_stable_mode=True,
                                     return_softmax=False,
                                     axis=-1):
    r"""

169 170
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
171 172 173 174 175 176
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

177 178 179
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
180 181 182 183 184 185 186
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
187
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
188 189 190 191

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
192
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
193 194 195 196

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
197 198 199
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
200 201 202 203 204 205

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
206 207 208
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
209 210 211 212 213
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
214
                                      if :attr:`soft_label` is set to :attr:`False`.
215 216 217
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
218 219 220
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
221 222 223 224 225
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
226
        axis (int, optional): The index of dimension to perform softmax calculations. It
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
255
            softmax, backprop, loss = _legacy_C_ops.softmax_with_cross_entropy(
256 257 258 259 260
                logits, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                'axis', axis)
        else:
            if in_dygraph_mode():
261
                softmax, loss = _C_ops.cross_entropy_with_softmax(
262 263 264
                    logits, label, soft_label, True, numeric_stable_mode,
                    ignore_index, axis)
            if _in_legacy_dygraph():
265
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                    logits, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                    'axis', axis)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
        'axis': axis
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
288 289 290 291 292 293 294
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
295 296 297 298 299 300 301 302

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
303 304
    """

305 306 307
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
308

309 310
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
311

312
    Args:
313
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
314
                        the data type is float32 or float64.
315
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
316 317 318 319
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

320

321 322
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
323

324 325 326
    Examples:

      .. code-block:: python
327

328
          import paddle
329

330
          DATATYPE = "float32"
331

332 333 334
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
335

336 337
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
338

339 340 341 342 343 344 345 346 347 348 349 350 351
    """
    check_variable_and_dtype(anchor, 'anchor', ['float32', 'float64'],
                             'npair_loss')
    check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                             'positive')
    check_variable_and_dtype(labels, 'labels', ['float32', 'float64', 'int64'],
                             'labels')
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

352 353 354
    labels = paddle.equal(labels, paddle.transpose(labels,
                                                   perm=[1,
                                                         0])).astype('float32')
355 356 357 358 359 360
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) \
             + paddle.mean(paddle.sum(paddle.square(positive), 1))
    l2loss = l2loss * Beta * l2_reg

361 362 363 364 365 366 367
    similarity_matrix = paddle.matmul(anchor,
                                      positive,
                                      transpose_x=False,
                                      transpose_y=True)
    softmax_ce = fluid_softmax_with_cross_entropy(logits=similarity_matrix,
                                                  label=labels,
                                                  soft_label=True)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
391 392
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
393 394 395 396 397 398 399 400 401 402 403 404 405

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
406
    if in_dygraph_mode():
407 408
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
409 410
        return square_out
    elif _in_legacy_dygraph():
411 412
        minus_out = _legacy_C_ops.elementwise_sub(input, label)
        square_out = _legacy_C_ops.square(minus_out)
413 414 415 416 417 418 419 420
        return square_out

    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'square_error_cost')
    check_variable_and_dtype(label, "label", ['float32', 'float64'],
                             'square_error_cost')
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
421 422 423 424 425 426
    helper.append_op(type='elementwise_sub',
                     inputs={
                         'X': [input],
                         'Y': [label]
                     },
                     outputs={'Out': [minus_out]})
427 428

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
429 430 431
    helper.append_op(type='square',
                     inputs={'X': [minus_out]},
                     outputs={'Out': [square_out]})
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    return square_out


def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance

    Returns:
475 476 477
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

516 517 518 519
        helper.append_op(type="sequence_erase",
                         inputs={"X": [input]},
                         outputs={"Out": [erased_input]},
                         attrs={"tokens": ignored_tokens})
520 521
        input = erased_input

522 523 524 525
        helper.append_op(type="sequence_erase",
                         inputs={"X": [label]},
                         outputs={"Out": [erased_label]},
                         attrs={"tokens": ignored_tokens})
526 527
        label = erased_label

Z
zhiboniu 已提交
528
    if in_dygraph_mode():
529 530
        return _C_ops.edit_distance(input, label, input_length, label_length,
                                    normalized)
Z
zhiboniu 已提交
531

532 533 534 535 536 537 538 539
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
540 541 542 543 544 545 546
    helper.append_op(type="edit_distance",
                     inputs=this_inputs,
                     outputs={
                         "Out": [edit_distance_out],
                         "SequenceNum": [sequence_num]
                     },
                     attrs={"normalized": normalized})
547 548 549 550

    return edit_distance_out, sequence_num


551 552 553 554
def binary_cross_entropy(input,
                         label,
                         weight=None,
                         reduction='mean',
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

614 615
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
616
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
617
            print(output)  # [0.65537095]
618 619 620 621 622 623 624 625

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

J
Jiabin Yang 已提交
626
    if in_dygraph_mode():
627
        out = _C_ops.bce_loss(input, label)
628
        if weight is not None:
629
            out = _C_ops.multiply(out, weight, 'axis', -1)
630 631

        if reduction == 'sum':
632
            return _C_ops.sum(out, [], None, False)
633

634
        elif reduction == 'mean':
635
            return _C_ops.mean_all(out)
636 637 638
        else:
            return out
    else:
J
Jiabin Yang 已提交
639
        if _in_legacy_dygraph():
640
            out = _legacy_C_ops.bce_loss(input, label)
J
Jiabin Yang 已提交
641
            if weight is not None:
642
                out = _legacy_C_ops.elementwise_mul(out, weight, 'axis', -1)
J
Jiabin Yang 已提交
643
            if reduction == 'sum':
644 645
                return _legacy_C_ops.reduce_sum(out, 'dim', [0], 'keep_dim',
                                                False, "reduce_all", True)
J
Jiabin Yang 已提交
646
            elif reduction == 'mean':
647
                return _legacy_C_ops.mean(out)
J
Jiabin Yang 已提交
648 649 650
            else:
                return out
        else:
651 652 653 654
            check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                     'binary_cross_entropy')
            check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                     'binary_cross_entropy')
J
Jiabin Yang 已提交
655 656 657 658

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
659 660 661 662 663 664
            helper.append_op(type='bce_loss',
                             inputs={
                                 'X': [input],
                                 'Label': [label],
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
                        "The weight is not a Tensor, please convert to Tensor.")

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
680 681


682 683 684 685 686 687
def binary_cross_entropy_with_logits(logit,
                                     label,
                                     weight=None,
                                     reduction='mean',
                                     pos_weight=None,
                                     name=None):
688
    r"""
689 690 691 692 693 694 695 696 697 698 699 700 701
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
702
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
703

704
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
705 706

    .. math::
707
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
708

N
Noel 已提交
709
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
710 711 712
    we reformulate the loss as follows:

    .. math::
713
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
758

759 760
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
761
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
762
            print(output)  # [0.45618808]
763 764 765 766 767 768 769 770

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

771
    if in_dygraph_mode():
772 773 774 775
        one = _C_ops.full([1], float(1.0), core.VarDesc.VarType.FP32,
                          _current_expected_place())
        out = _C_ops.sigmoid_cross_entropy_with_logits(logit, label, False,
                                                       -100)
776
        if pos_weight is not None:
777 778 779
            log_weight = _C_ops.add(
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one)
            out = _C_ops.multiply(out, log_weight)
780
        if weight is not None:
781
            out = _C_ops.multiply(out, weight)
782 783

        if reduction == "sum":
784
            return _C_ops.sum(out, [], None, False)
785
        elif reduction == "mean":
786
            return _C_ops.mean_all(out)
H
hong 已提交
787
        else:
788 789 790
            return out
    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
791 792 793 794
        _legacy_C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu',
                                    False, 'dtype', one.dtype, 'str_value',
                                    '1.0', 'shape', [1])
        out = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
795
        if pos_weight is not None:
796 797 798 799
            log_weight = _legacy_C_ops.elementwise_add(
                _legacy_C_ops.elementwise_mul(
                    label, _legacy_C_ops.elementwise_sub(pos_weight, one)), one)
            out = _legacy_C_ops.elementwise_mul(out, log_weight)
800
        if weight is not None:
801
            out = _legacy_C_ops.elementwise_mul(out, weight)
802 803

        if reduction == "sum":
804
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
805
        elif reduction == "mean":
806
            return _legacy_C_ops.mean(out)
807 808 809
        else:
            return out

810 811 812 813
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
814 815 816 817
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

818
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
819 820
        logit, label, name=sigmoid_name)

Z
zhiboniu 已提交
821
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
822
    if pos_weight is not None:
823 824 825
        check_variable_and_dtype(pos_weight, 'pos_weight',
                                 ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
826
        log_weight = paddle.add(
827
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one)
828 829 830 831
        pos_weight_name = name if reduction == 'none' and weight is None else None
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
832 833
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
834 835 836 837 838 839 840 841 842 843
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


844 845 846 847 848 849 850 851 852 853 854 855
def hsigmoid_loss(input,
                  label,
                  num_classes,
                  weight,
                  bias=None,
                  path_table=None,
                  path_code=None,
                  is_sparse=False,
                  name=None):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
856

857 858 859
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
860 861

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
862 863
    represents the number of classes or the size of word dict.

864 865 866 867
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
914 915 916 917 918
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
919 920 921
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
922 923 924 925
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
926 927

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
928 929 930 931
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
932
    """
933
    if in_dygraph_mode():
934 935
        out, _, _ = _C_ops.hierarchical_sigmoid(input, weight, label,
                                                path_table, path_code, bias,
936 937 938 939 940 941 942
                                                num_classes, is_sparse, 0, [],
                                                [], [], is_sparse)
        return out
    elif _in_legacy_dygraph():
        out, _, _ = _legacy_C_ops.hierarchical_sigmoid(
            input, weight, label, path_table, path_code, bias, 'num_classes',
            num_classes, 'is_sparse', is_sparse, 'remote_prefetch', is_sparse)
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
        return out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'hsigmoid_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'hsigmoid_loss')
    if bias is not None:
        check_variable_and_dtype(bias, 'bias', ['float32', 'float64'],
                                 'hsigmoid_loss')
    if path_table is not None:
        check_variable_and_dtype(path_table, 'path_table', ['int64'],
                                 'hsigmoid_loss')
    if path_code is not None:
        check_variable_and_dtype(path_code, 'path_code', ['int64'],
                                 'hsigmoid_loss')

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

980 981 982 983
    helper.append_op(type="hierarchical_sigmoid",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
984 985 986
    return out


987
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
988
    r"""
989
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
990 991 992 993 994 995
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

996
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
997 998 999 1000 1001 1002


    where z_i is given by:

    .. math::

1003 1004
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
1005
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
1006
        \end{array} \right.
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1020
        delta (float, optional): Specifies the hyperparameter delta to be used.
1021 1022 1023 1024 1025 1026 1027
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1028
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
1040
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1041
            print(output)
1042
    """
1043 1044 1045 1046
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'smooth_l1_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'smooth_l1_loss')
1047

1048
    if in_dygraph_mode():
1049
        out, residual = _C_ops.huber_loss(input, label, delta)
1050 1051 1052 1053 1054 1055
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        helper.append_op(type='huber_loss',
                         inputs={
                             'X': input,
                             'Y': label
                         },
                         outputs={
                             'Out': out,
                             'Residual': residual
                         },
                         attrs={'delta': delta})
1066 1067 1068 1069 1070 1071 1072 1073

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1074
        return paddle.mean(out)
1075
    elif reduction == 'sum':
1076
        return paddle.sum(out)
1077 1078


1079 1080
def margin_ranking_loss(input,
                        other,
1081
                        label,
1082 1083 1084
                        margin=0.0,
                        reduction='mean',
                        name=None):
1085
    r"""
1086

1087
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1088

1089
    .. math::
1090
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1107
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1108 1109 1110 1111
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1112
    Returns:
1113
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1114 1115 1116 1117 1118

    Examples:

        .. code-block:: python

1119 1120
            import paddle

Z
Zhong Hui 已提交
1121 1122 1123
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1124
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1125
            print(loss) # [0.75]
1126
    """
1127 1128 1129 1130
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
1131
    if in_dygraph_mode():
1132 1133
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1134 1135
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1136 1137
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1138
        if reduction == 'sum':
1139
            return _C_ops.sum(out, [], None, False)
1140
        elif reduction == 'mean':
1141
            return _C_ops.mean_all(out)
1142 1143
        return out
    elif _in_legacy_dygraph():
1144 1145
        out = _legacy_C_ops.elementwise_sub(other, input)
        out = _legacy_C_ops.elementwise_mul(out, label)
1146 1147
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1148 1149
            out = _legacy_C_ops.elementwise_add(out, margin)
        out = _legacy_C_ops.relu(out)
1150
        if reduction == 'sum':
1151
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
1152
        elif reduction == 'mean':
1153
            return _legacy_C_ops.mean(out)
1154 1155 1156
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
1157 1158 1159 1160 1161 1162
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(other, 'other', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'margin_rank_loss')
1163

1164 1165 1166
    out = paddle.subtract(input, other)
    neg_label = paddle.neg(label)
    out = paddle.multiply(neg_label, out)
1167 1168 1169

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1170
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1171 1172 1173 1174 1175
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
1176 1177 1178
        helper.append_op(type="relu",
                         inputs={"X": out},
                         outputs={"Out": result_out})
1179 1180 1181 1182
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
1183 1184 1185 1186
        helper.append_op(type="reduce_sum",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs=attrs)
1187 1188 1189
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
1190 1191 1192 1193
        helper.append_op(type="mean",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs={})
1194 1195 1196
        return result_out


1197
def l1_loss(input, label, reduction='mean', name=None):
1198
    r"""
1199
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1200

1201
    If `reduction` set to ``'none'``, the loss is:
1202 1203

    .. math::
1204
        Out = \lvert input - label \rvert
1205

1206
    If `reduction` set to ``'mean'``, the loss is:
1207 1208

    .. math::
1209
        Out = MEAN(\lvert input - label \rvert)
1210

1211
    If `reduction` set to ``'sum'``, the loss is:
1212 1213

    .. math::
1214
        Out = SUM(\lvert input - label \rvert)
1215

1216

1217
    Parameters:
N
Noel 已提交
1218 1219
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1220
        reduction (str, optional): Indicate the reduction to apply to the loss,
1221
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1222 1223 1224
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1225 1226
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1227

1228
    Returns:
1229
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1230 1231
        If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1232

1233 1234
    Examples:
        .. code-block:: python
N
Noel 已提交
1235

1236
            import paddle
1237

1238 1239
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1240

1241
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1242
            print(l1_loss.numpy())
1243 1244
            # [0.35]

1245
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1246
            print(l1_loss.numpy())
1247 1248 1249
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

1250
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1251
            print(l1_loss.numpy())
1252 1253 1254 1255 1256 1257 1258
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

1259
    if in_dygraph_mode():
1260 1261
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1262
        if reduction == 'mean':
1263
            return _C_ops.mean_all(unreduced)
1264
        elif reduction == 'sum':
1265
            return _C_ops.sum(unreduced, [], None, False)
1266 1267
        else:
            return unreduced
1268
    elif _in_legacy_dygraph():
1269 1270 1271 1272 1273
        unreduced = _elementwise_op_in_dygraph(input,
                                               label,
                                               axis=-1,
                                               act='abs',
                                               op_name='elementwise_sub')
1274
        if reduction == 'mean':
1275
            return _legacy_C_ops.mean(unreduced)
1276
        elif reduction == 'sum':
1277 1278
            return _legacy_C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim',
                                            False, 'reduce_all', True)
1279 1280 1281
        else:
            return unreduced

1282 1283 1284 1285 1286 1287
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
    check_variable_and_dtype(label, 'label',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
1288 1289

    if reduction == 'sum':
1290
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1291 1292
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1293
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1294 1295
        return paddle.mean(unreduced, name=name)
    else:
1296 1297 1298 1299
        return paddle.fluid.layers.elementwise_sub(input,
                                                   label,
                                                   act='abs',
                                                   name=name)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1322 1323
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1338

1339 1340 1341 1342
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1343 1344 1345 1346 1347
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1348
                log_out = log_softmax(input)
1349
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1350
                result = nll_loss(log_out, label)
1351
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1352 1353 1354 1355 1356 1357 1358 1359 1360
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1361 1362
        raise ValueError(
            'Expected 2 or more dimensions (got {})'.format(input_dims))
1363 1364
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1365 1366
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1367 1368
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1369
            out_shape = [n] + input_shape[2:]
1370 1371
        out, total_weight = _C_ops.nll_loss(input, label, weight, ignore_index,
                                            reduction)
Z
zyfncg 已提交
1372
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1373
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1374
        return out
1375
    elif _in_legacy_dygraph():
1376
        if input_dims != 2 and input_dims != 4:
1377 1378 1379
            input, _ = _legacy_C_ops.reshape2(input, None, 'shape',
                                              [n, c, 1, -1])
            label, _ = _legacy_C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1380
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1381

1382 1383 1384
        out, total_weight = _legacy_C_ops.nll_loss(input, label, weight,
                                                   'ignore_index', ignore_index,
                                                   'reduction', reduction)
1385
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1386
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', out_shape)
1387 1388 1389 1390 1391 1392 1393 1394 1395
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1396 1397
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

1408 1409 1410 1411
    helper.append_op(type='nll_loss',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
1412 1413 1414 1415
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1416 1417


1418
def kl_div(input, label, reduction='mean', name=None):
1419
    r"""
1420
    Calculate the Kullback-Leibler divergence loss
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
1431
    the same shape as input, loss in each point is calculated
1432
    separately and no reduction is applied.
1433

1434 1435
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
1436

1437 1438
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
1439 1440

    While :attr:`reduction` is :attr:`batchmean`, output loss is
1441 1442 1443 1444
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
1445
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1446 1447 1448 1449 1450 1451 1452 1453 1454
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
1455
        name(str, optional): Name for the operation (optional, default is None). For more information,
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1466

1467
            shape = (5, 20)
1468 1469
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1470

L
LielinJiang 已提交
1471
            # 'batchmean' reduction, loss shape will be [1]
1472
            pred_loss = F.kl_div(x, target, reduction='batchmean')
L
LielinJiang 已提交
1473
            # shape=[1]
1474

1475
            # 'mean' reduction, loss shape will be [1]
1476
            pred_loss = F.kl_div(x, target, reduction='mean')
1477 1478 1479
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1480
            pred_loss = F.kl_div(x, target, reduction='sum')
1481 1482 1483
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1484
            pred_loss = F.kl_div(x, target, reduction='none')
1485 1486 1487
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1488 1489 1490 1491
    # ugly type promotion
    if fluid.data_feeder.convert_dtype(
            input.dtype) == 'float32' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float64':
1492
        input = paddle.cast(input, 'float64')
L
LielinJiang 已提交
1493 1494 1495
    elif fluid.data_feeder.convert_dtype(
            input.dtype) == 'float64' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float32':
1496
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1497

1498
    if in_dygraph_mode():
1499
        out = _C_ops.kldiv_loss(input, label, 'none')
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
    elif _in_legacy_dygraph():
1510
        out = _legacy_C_ops.kldiv_loss(input, label, 'reduction', 'none')
1511 1512 1513 1514 1515 1516 1517 1518
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1519 1520 1521 1522
        return out

    helper = LayerHelper('kl_div', **locals())

1523 1524
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1525 1526 1527
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
1528 1529 1530 1531 1532 1533 1534
    helper.append_op(type='kldiv_loss',
                     inputs={
                         'X': input,
                         'Target': label
                     },
                     outputs={'Loss': loss},
                     attrs={'reduction': 'none'})
1535 1536 1537 1538 1539 1540 1541 1542

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1543 1544 1545
    return loss


1546
def mse_loss(input, label, reduction='mean', name=None):
1547
    r"""
1548
    Accept input predications and label and returns the mean square error.
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1578
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1579

1580 1581 1582
    Examples:

        .. code-block:: python
1583

1584 1585
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1586 1587
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1588
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1589
            print(output)
1590 1591 1592 1593 1594 1595 1596 1597 1598
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
1599
    if not in_dynamic_mode():
1600 1601 1602 1603
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'mse_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'mse_loss')
1604 1605

    if reduction == 'none':
1606
        return paddle.square(paddle.subtract(input, label), name=name)
1607
    elif reduction == 'mean':
1608 1609
        return paddle.mean(paddle.square(paddle.subtract(input, label)),
                           name=name)
1610
    else:
1611
        return paddle.sum(paddle.square(paddle.subtract(input, label)),
1612
                          name=name)
1613 1614


1615 1616 1617 1618 1619
def ctc_loss(log_probs,
             labels,
             input_lengths,
             label_lengths,
             blank=0,
1620
             reduction='mean',
H
Hui Zhang 已提交
1621
             norm_by_times=False):
1622 1623
    """

1624 1625 1626
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1627 1628 1629
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1630
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1631 1632 1633 1634 1635
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1636
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1637

1638 1639
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1679 1680 1681 1682
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1683

1684 1685 1686 1687
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1688
                reduction='none')
1689
            print(loss)  #[3.9179852 2.9076521]
1690

1691 1692 1693 1694 1695
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1696
            print(loss)  #[1.1376063]
1697 1698 1699

    """

1700
    loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
H
Hui Zhang 已提交
1701
                                    input_lengths, label_lengths)
1702

Z
zhiboniu 已提交
1703
    loss_out = paddle.squeeze(loss_out, [-1])
1704 1705
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1706
        loss_out = paddle.mean(loss_out / label_lengths)
1707 1708 1709 1710 1711
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1712 1713 1714 1715 1716 1717 1718 1719 1720
def margin_cross_entropy(logits,
                         label,
                         margin1=1.0,
                         margin2=0.5,
                         margin3=0.0,
                         scale=64.0,
                         group=None,
                         return_softmax=False,
                         reduction='mean'):
1721
    r"""
1722 1723
    .. math::

1724
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1725

1726
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1727 1728 1729 1730
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1731 1732 1733 1734
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1735 1736

    Args:
G
Guoxia Wang 已提交
1737
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1738
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1739 1740 1741 1742 1743
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1744
        group (Group, optional): The group instance return by paddle.distributed.new_group
1745 1746
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1747 1748 1749 1750 1751 1752 1753 1754
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
1755 1756 1757 1758 1759 1760
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
            the shape is ``[1]``.
1761 1762 1763 1764

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1765
        :name: code-example1
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1814
        :name: code-example2
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

1861
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
1905 1906 1907 1908 1909 1910 1911
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1912 1913
        return

1914
    ring_id = 0
1915 1916
    rank = 0
    nranks = 1
1917 1918 1919 1920 1921 1922 1923 1924
    if group != False:
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1925 1926 1927 1928 1929

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
1930
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
1931 1932 1933 1934
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

1935
    if in_dygraph_mode():
1936 1937 1938 1939
        softmax, loss = _C_ops.margin_cross_entropy(logits, label,
                                                    return_softmax, ring_id,
                                                    rank, nranks, margin1,
                                                    margin2, margin3, scale)
1940 1941 1942 1943 1944 1945 1946 1947
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
1948
    elif _in_legacy_dygraph():
1949
        softmax, loss = _legacy_C_ops.margin_cross_entropy(
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks,
            'margin1', margin1, 'margin2', margin2, 'margin3', margin3, 'scale',
            scale, 'return_softmax', return_softmax)
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    check_variable_and_dtype(logits, 'logits',
                             ['float16', 'float32', 'float64'],
                             'margin_cross_entropy')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'],
                             'margin_cross_entropy')

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
    helper.append_op(type=op_type,
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs={
                         'Softmax': softmax,
                         'Loss': loss
                     },
                     attrs={
                         'return_softmax': return_softmax,
                         'ring_id': ring_id,
                         'rank': rank,
                         'nranks': nranks,
                         'margin1': margin1,
                         'margin2': margin2,
                         'margin3': margin3,
                         'scale': scale,
                     })
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


2004 2005 2006 2007
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2008 2009 2010
    reason=
    ('Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
     'and "paddle.nn.functional.cross_entropy" is different.'))
2011 2012 2013 2014 2015 2016 2017
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100,
                               numeric_stable_mode=True,
                               return_softmax=False,
                               axis=-1):
2018
    r"""
2019 2020
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2021 2022 2023 2024 2025 2026
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2027 2028 2029
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2056 2057 2058
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2059 2060 2061 2062 2063
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2064
                                      if :attr:`soft_label` is set to :attr:`False`.
2065 2066 2067
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2068 2069 2070
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2071 2072 2073 2074 2075
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2076
        axis (int, optional): The index of dimension to perform softmax calculations. It
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
2103 2104 2105 2106 2107
    return fluid_softmax_with_cross_entropy(logits, label, soft_label,
                                            ignore_index, numeric_stable_mode,
                                            return_softmax, axis)


2108 2109 2110 2111
def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
2112 2113 2114
                  reduction='mean',
                  soft_label=False,
                  axis=-1,
2115
                  use_softmax=True,
2116
                  name=None):
2117
    r"""
2118 2119 2120
    By default, this operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2121

2122
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
2123

2124 2125
    By default, this operator will calculate the mean of the result, and you can also affect
    the default behavior by using the reduction parameter. Please refer to the part of
2126
    parameters for details.
2127

2128
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
2129
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2130
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2131

2132
    The calculation of this operator includes the following two steps.
2133

2134
    - **1.softmax cross entropy**
2135

2136
        1. Hard label (each sample can only be assigned into one category)
2137

2138
        1.1. when use_softmax=True
2139

2140 2141
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2184
                \\loss_j=loss_j*weight[label_j]
2185

2186

2187 2188 2189 2190 2191 2192 2193
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2194
            2.1 if the ``reduction`` parameter is ``none``
2195 2196 2197

                Return the previous result directly

2198
            2.2 if the ``reduction`` parameter is ``sum``
2199 2200 2201 2202 2203 2204

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2205 2206
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2207

2208
            2.3.1. If the  ``weight``  parameter is ``None``
2209 2210 2211

                   Return the average value of the previous results

2212
            .. math::
2213 2214 2215 2216 2217 2218 2219 2220
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2221
            .. math::
2222
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2223 2224 2225

            2. Soft labels (soft_label = True)

2226
            .. math::
2227
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2228 2229


2230
    Parameters:
2231 2232 2233 2234

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
2235
        :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` .
2236

2237
            Note:
2238

2239
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
2240 2241 2242
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
2243

2244 2245 2246 2247 2248 2249
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2250
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2251 2252 2253 2254
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

2255 2256
            a manual rescaling weight given to each class.
            If given, has to be a Tensor of size C and the data type is float32, float64.
2257 2258 2259 2260 2261
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
2262 2263
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2264 2265 2266 2267 2268
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
2269 2270
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2271
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2272 2273
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2274

2275 2276
        - **soft_label** (bool, optional)

2277
            Indicate whether label is soft.
2278 2279 2280 2281
            Default is ``False``.

        - **axis** (int, optional)

2282 2283 2284
            The index of dimension to perform softmax calculations.
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2285 2286 2287 2288 2289 2290 2291
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
2292
        - **name** (str, optional)
2293 2294 2295

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
2296 2297 2298

    Returns:

2299 2300
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2301

2302
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2303

2304
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2305

2306
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2307

2308
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2309 2310


2311
    Examples:
2312 2313

        .. code-block:: python
2314 2315

            # hard labels
2316 2317 2318 2319 2320
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2321
            input =  paddle.rand([N, C], dtype='float64')
2322
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2323 2324
            weight = paddle.rand([C], dtype='float64')

2325 2326 2327 2328 2329 2330 2331 2332
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]

        .. code-block:: python
2333 2334

            # soft labels
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2348 2349 2350
                                                                  logits,
                                                                  labels,
                                                                  soft_label=True,
2351 2352 2353 2354
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
2355

2356 2357 2358 2359
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2360 2361 2362
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)
2363 2364 2365 2366 2367 2368
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
            "should be '-100', but received %s, which is not allowed." %
            ignore_index)

2369
    input_dims = len(list(input.shape))
2370 2371 2372
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2373 2374
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2375
        raise ValueError(
2376 2377 2378 2379
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2380

2381
    if in_dygraph_mode():
H
HydrogenSulfate 已提交
2382
        if soft_label == False:
2383 2384
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
F
fwenguang 已提交
2385
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2386
            if soft_label == False:
2387
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2388 2389 2390 2391
                    input, valid_label, 'soft_label', soft_label,
                    'ignore_index', ignore_index, 'numeric_stable_mode', True,
                    'axis', axis, 'use_softmax', use_softmax)
            else:
2392
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2393 2394 2395
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2396
        else:
2397 2398 2399
            _, out = _C_ops.cross_entropy_with_softmax(input, label, soft_label,
                                                       use_softmax, True,
                                                       ignore_index, axis)
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
            if soft_label == True:
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2418
                out = _C_ops.multiply(out, weight_gather_reshape)
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
                        axis] == 1:
                    # TODO: Temporarily use squeeze instead of squeeze_
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
                if axis != -1 and axis != valid_label.ndim - 1:
                    temp_perm = list(range(axis % valid_label.ndim)) \
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
                                + [axis % valid_label.ndim]
2438
                    weight_gather = _C_ops.gather_nd(
2439 2440
                        weight, valid_label.transpose(temp_perm))
                else:
2441 2442 2443
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
                weight_gather = _C_ops.multiply(weight_gather,
                                                ignore_weight_mask)
2444 2445 2446 2447
                input_shape = list(label.shape)
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
2448
                out = _C_ops.multiply(out, weight_gather_reshape)
2449 2450 2451 2452 2453

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2454
            return _C_ops.sum(out, [], None, False)
2455 2456 2457 2458 2459 2460 2461 2462
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
            if ignore_index >= 0:
2463
                out_sum = _C_ops.sum(out, [], None, False)
2464 2465 2466 2467 2468 2469
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                mask = (label != ignore_index)
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2470
                    count = _C_ops.sum(mask, [], None, False)
2471 2472 2473
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2474 2475 2476
                    weight_ignored = _C_ops.multiply(mask,
                                                     weight_gather_reshape)
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2477 2478 2479
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2480 2481 2482
                out_sum = _C_ops.sum(out, [], None, False)
                total_weight = _C_ops.sum(weight_gather_reshape, [], None,
                                          False)
2483 2484
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2485
                return _C_ops.mean_all(out)
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

    elif _in_legacy_dygraph():
        if soft_label == False:
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
            if label_max >= input.shape[axis]:
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
            if soft_label == False:
2506
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2507 2508 2509 2510
                    input, valid_label, 'soft_label', soft_label,
                    'ignore_index', ignore_index, 'numeric_stable_mode', True,
                    'axis', axis, 'use_softmax', use_softmax)
            else:
2511
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2512 2513 2514
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2515
        else:
2516
            _, out = _legacy_C_ops.softmax_with_cross_entropy(
2517 2518 2519
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
2520

2521
        if weight is not None:
2522

H
HydrogenSulfate 已提交
2523
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2524 2525
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
2526
                # weight's shape is C, where C is class num.
2527 2528
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2529 2530 2531 2532 2533
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
2534 2535 2536 2537
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2538
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2539 2540

            else:
2541 2542 2543 2544 2545 2546 2547
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

H
HydrogenSulfate 已提交
2548 2549
                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
H
HydrogenSulfate 已提交
2550
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2551
                        axis] == 1:
H
HydrogenSulfate 已提交
2552
                    # TODO: Temporarily use squeeze instead of squeeze_
H
HydrogenSulfate 已提交
2553 2554
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
H
HydrogenSulfate 已提交
2555
                if axis != -1 and axis != valid_label.ndim - 1:
2556
                    temp_perm = list(range(axis % valid_label.ndim)) \
2557
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
H
HydrogenSulfate 已提交
2558
                                + [axis % valid_label.ndim]
2559
                    weight_gather = _legacy_C_ops.gather_nd(
2560 2561
                        weight, valid_label.transpose(temp_perm))
                else:
2562 2563 2564
                    weight_gather = _legacy_C_ops.gather_nd(weight, valid_label)
                weight_gather = _legacy_C_ops.elementwise_mul(
                    weight_gather, ignore_weight_mask)
2565
                input_shape = list(label.shape)
2566 2567
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
2568
                out = paddle.cast(out, weight_gather_reshape.dtype)
2569
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2570

2571
        if reduction == "sum":
H
HydrogenSulfate 已提交
2572
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2573 2574
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2575
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
2576
        elif reduction == "mean":
H
HydrogenSulfate 已提交
2577 2578 2579 2580 2581 2582
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
2583
            if ignore_index >= 0:
2584
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
2585 2586 2587
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
2588
                mask = (label != ignore_index)
2589
                if weight is None:
2590
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2591
                    count = _legacy_C_ops.reduce_sum(mask, 'reduce_all', True)
2592
                    ret = out_sum / (count + (count == 0.0))
2593 2594
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2595
                    weight_ignored = _legacy_C_ops.elementwise_mul(
2596
                        mask, weight_gather_reshape)
2597 2598
                    weight_sum = _legacy_C_ops.reduce_sum(
                        weight_ignored, 'reduce_all', True)
2599
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2600 2601
                return ret
            elif weight is not None:
2602 2603 2604
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
                total_weight = _legacy_C_ops.reduce_sum(weight_gather_reshape,
                                                        'reduce_all', True)
2605
                return out_sum / (total_weight + (total_weight == 0.0))
2606
            else:
2607
                return _legacy_C_ops.mean(out)
2608
        else:
2609 2610
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
2611
            return out
2612

F
feifei-111 已提交
2613
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
2614 2615
                             'softmax_cross_entropy')
    check_variable_and_dtype(
2616 2617
        label, 'label',
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
2618
        'softmax_cross_entropy')
2619 2620 2621 2622 2623
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
2624
        'use_softmax': use_softmax
2625 2626 2627 2628
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
2629 2630 2631 2632 2633

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
2634 2635 2636 2637 2638 2639 2640
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': input,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
2641

2642
    if weight is not None:
2643 2644
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'softmax_cross_entropy')
2645
        weight_name = name if reduction == 'none' else None
2646 2647
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
2648
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2649 2650 2651
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2652 2653 2654 2655
            weight_gather = paddle.matmul(x=paddle.cast(label, weight.dtype),
                                          y=weight,
                                          transpose_x=False,
                                          transpose_y=True)
2656 2657 2658 2659 2660

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
2661 2662
            if input.shape[axis] != weight.shape[-1]:
                raise ValueError("input's class_dimension({}) must equal to "
2663 2664
                                 "weight's class_dimension({}) "
                                 "when weight is provided" \
2665
                                 .format(input.shape[axis], weight.shape[-1]))
H
HydrogenSulfate 已提交
2666

H
HydrogenSulfate 已提交
2667
            valid_label = paddle.multiply(
2668
                paddle.cast(label != ignore_index, dtype=label.dtype), label)
H
HydrogenSulfate 已提交
2669 2670
            ignore_weight_mask = paddle.cast((label != ignore_index),
                                             input.dtype)
H
HydrogenSulfate 已提交
2671
            if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2672 2673
                    axis] == 1:
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
2674
            if axis != -1 and axis != valid_label.ndim - 1:
2675
                temp_perm = list(range(axis % valid_label.ndim)) \
H
HydrogenSulfate 已提交
2676
                            + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
2677 2678 2679 2680 2681
                            + [axis % valid_label.ndim]
                weight_gather = paddle.gather_nd(
                    weight, paddle.transpose(valid_label, temp_perm))
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2682 2683
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

2684 2685
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
2686
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2687

2688 2689 2690
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
2691
        if ignore_index >= 0:
2692
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2693 2694 2695
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
2696 2697 2698 2699
            mask = (label != ignore_index)
            if (weight is None):
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
2700
                ret = out_sum / (count + (count == 0.0))
2701 2702 2703 2704
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
2705
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
2706 2707
            return ret
        elif weight is not None:
2708 2709
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
2710
            return out_sum / (total_weight + (total_weight == 0.0))
2711 2712
        else:
            return paddle.mean(out, name=name)
2713

2714
    else:
2715 2716 2717
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

2718
        return out
2719 2720 2721 2722 2723 2724 2725 2726 2727


def sigmoid_focal_loss(logit,
                       label,
                       normalizer=None,
                       alpha=0.25,
                       gamma=2.0,
                       reduction='sum',
                       name=None):
2728
    r"""
2729 2730 2731 2732 2733 2734
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2735
    This operator measures focal loss function as follows:
2736 2737

    .. math::
2738
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2739

2740
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2741 2742 2743 2744 2745

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2746
           Out = \frac{Out}{normalizer}
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
2764
            For object detection task, it is the number of positive samples.
2765 2766
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
2767
            it should be between 0 and 1.  Default value is set to 0.25.
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2792
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2793
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2794
            print(output)  # [0.65782464]
2795 2796 2797 2798 2799 2800 2801 2802 2803

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

    if normalizer is not None:
2804 2805
        check_variable_and_dtype(normalizer, 'normalizer',
                                 ['float32', 'float64'], 'sigmoid_focal_loss')
2806 2807 2808 2809
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2810 2811
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}."
                .format(normalizer_dims))
2812

2813 2814
    if in_dygraph_mode():
        place = _current_expected_place()
2815
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
2816

2817 2818
        loss = _C_ops.sigmoid_cross_entropy_with_logits(logit, label, False,
                                                        -100)
2819

2820
        pred = _C_ops.sigmoid(logit)
2821

2822 2823 2824 2825
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
            _C_ops.multiply(_C_ops.subtract(one, pred),
                            _C_ops.subtract(one, label)))
2826 2827

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2828 2829 2830 2831 2832
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
            _C_ops.multiply(_C_ops.subtract(one, alpha),
                            _C_ops.subtract(one, label)))
        loss = _C_ops.multiply(alpha_t, loss)
2833 2834

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2835 2836
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
2837 2838

        if normalizer is not None:
2839
            loss = _C_ops.divide(loss, normalizer)
2840 2841

        if reduction == "sum":
2842
            return _C_ops.sum(loss, [], None, False)
2843
        elif reduction == "mean":
2844
            return _C_ops.mean_all(loss)
2845 2846 2847 2848 2849

        return loss

    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
2850 2851 2852 2853
        _legacy_C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu',
                                    False, 'dtype', one.dtype, 'str_value',
                                    '1.0', 'shape', logit.shape)
        loss = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
2854

2855
        pred = _legacy_C_ops.sigmoid(logit)
2856

2857 2858 2859 2860 2861
        p_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(pred, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, pred),
                _legacy_C_ops.elementwise_sub(one, label)))
2862 2863

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2864 2865 2866 2867 2868 2869
        alpha_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(alpha, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, alpha),
                _legacy_C_ops.elementwise_sub(one, label)))
        loss = _legacy_C_ops.elementwise_mul(alpha_t, loss)
2870 2871

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2872 2873 2874
        gamma_t = _legacy_C_ops.elementwise_pow(
            _legacy_C_ops.elementwise_sub(one, p_t), gamma)
        loss = _legacy_C_ops.elementwise_mul(gamma_t, loss)
2875 2876

        if normalizer is not None:
2877
            loss = _legacy_C_ops.elementwise_div(loss, normalizer)
2878 2879

        if reduction == "sum":
2880
            return _legacy_C_ops.reduce_sum(loss, 'reduce_all', True)
2881
        elif reduction == "mean":
2882
            return _legacy_C_ops.mean(loss)
2883 2884 2885

        return loss

2886 2887 2888 2889
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'sigmoid_focal_loss')
2890 2891 2892 2893 2894 2895 2896

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
        logit, label, reduction='none', name=bce_name)

Z
zhiboniu 已提交
2897
    pred = paddle.nn.functional.sigmoid(logit)
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
2916 2917


Y
yangguohao 已提交
2918 2919 2920 2921 2922 2923
def multi_label_soft_margin_loss(input,
                                 label,
                                 weight=None,
                                 reduction="mean",
                                 name=None):
    r"""
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
2952

2953 2954 2955 2956 2957
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
2958

2959 2960
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
2961

2962 2963
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
            # Tensor([1.54908717])
Y
yangguohao 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

    if not (input.shape == label.shape):
        raise ValueError("The input and label should have same dimension,"
                         "but received {}!={}".format(input.shape, label.shape))

    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')

    loss = -(label * paddle.nn.functional.log_sigmoid(input) +
             (1 - label) * paddle.nn.functional.log_sigmoid(-input))

    if weight is not None:
        if not _non_static_mode():
            check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                     'multilabel_soft_margin_loss')
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3011 3012
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3013
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

3090
    if not _non_static_mode():
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'hinge_embedding_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'hinge_embedding_loss')

    zero_ = paddle.zeros([1], dtype=input.dtype)
    loss = paddle.where(label == 1., input, zero_) + \
           paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213


def cosine_embedding_loss(input1,
                          input2,
                          label,
                          margin=0,
                          reduction='mean',
                          name=None):
    r"""
    This operator computes the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

     Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
            "1D target tensor expected, multi-target not supported")

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
            "different sizes")

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
            "The data type of input Variable must be 'float32' or 'float64'")
    if label.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242


def triplet_margin_with_distance_loss(input,
                                      positive,
                                      negative,
                                      distance_function=None,
                                      margin=1.0,
                                      swap=False,
                                      reduction='mean',
                                      name=None):
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3243
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3259

3260 3261
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3262

Y
yangguohao 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3274

Y
yangguohao 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError("'reduction' in 'triplet_margin_with_distance_loss' "
                         "should be 'sum', 'mean' or 'none', "
                         "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = distance_function if distance_function is not None \
        else paddle.nn.PairwiseDistance(2)

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
            "The distance functions should be checked.")

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461


def triplet_margin_loss(input,
                        positive,
                        negative,
                        margin=1.0,
                        p=2,
                        epsilon=1e-6,
                        swap=False,
                        reduction='mean',
                        name=None):
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540


def soft_margin_loss(input, label, reduction='mean', name=None):
    """
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        input (Tensor): The input predications tensor with shape: [N, *],
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
             Available dtype is float32, float64.

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is [1].

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)

            input_np = np.random.uniform(0.1, 0.8, size=(5, 5)).astype(np.float64)
            label_np = np.random.randint(0, 2, size=(5, 5)).astype(np.int64)
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

    if not _non_static_mode():
        fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                   ['float32', 'float64'],
                                                   'soft_margin_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss')

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to "
                         "label's shape")

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out