loss.py 155.6 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
24
from ...tensor.manipulation import reshape
25
from ...fluid.layer_helper import LayerHelper
26
from ...fluid.framework import _varbase_creator
27
from ...static import Variable
28
from paddle.utils import deprecated
29
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
30
from paddle import in_dynamic_mode
Y
yangguohao 已提交
31
from paddle.framework import core, _non_static_mode
32
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode, _current_expected_place
33

34 35
__all__ = []

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
    assert len(input.shape) >= 2, \
        "The rank of input should be greater than or equal to 2."
83 84 85 86
    assert len(input.shape) == len(
        label.shape), ("The rank of input and label should be equal, "
                       "but received input: %d, label: %d." %
                       (len(input.shape), len(label.shape)))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    assert label.shape[-1] == 1, ("The last dimension of label should be 1, "
                                  "but received %d." % label.shape[-1])
    assert input.shape[:-1] == label.shape[:-1], (
        "All dimensions should be equal except the last one.")
    assert input.numel() > 0 and label.numel() > 0, \
        "Any dimension of input and label cannot be equal to 0."

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
        label, axis=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
142
        return _C_ops.log_loss(input, label, epsilon)
143 144 145 146 147 148 149

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

150 151 152 153 154 155 156
    helper.append_op(type='log_loss',
                     inputs={
                         'Predicted': [input],
                         'Labels': [label]
                     },
                     outputs={'Loss': [loss]},
                     attrs={'epsilon': epsilon})
157 158 159 160 161 162 163 164 165 166 167 168
    return loss


def fluid_softmax_with_cross_entropy(logits,
                                     label,
                                     soft_label=False,
                                     ignore_index=-100,
                                     numeric_stable_mode=True,
                                     return_softmax=False,
                                     axis=-1):
    r"""

169 170
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
171 172 173 174 175 176
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

177 178 179
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
180 181 182 183 184 185 186
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
187
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
188 189 190 191

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
192
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
193 194 195 196

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
197 198 199
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
200 201 202 203 204 205

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
206 207 208
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
209 210 211 212 213
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
214
                                      if :attr:`soft_label` is set to :attr:`False`.
215 216 217
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
218 219 220
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
221 222 223 224 225
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
226
        axis (int, optional): The index of dimension to perform softmax calculations. It
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
255
            softmax, backprop, loss = _legacy_C_ops.softmax_with_cross_entropy(
256 257 258 259 260
                logits, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                'axis', axis)
        else:
            if in_dygraph_mode():
261
                softmax, loss = _C_ops.cross_entropy_with_softmax(
262 263 264
                    logits, label, soft_label, True, numeric_stable_mode,
                    ignore_index, axis)
            if _in_legacy_dygraph():
265
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                    logits, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                    'axis', axis)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
        'axis': axis
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
288 289 290 291 292 293 294
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
295 296 297 298 299 300 301 302

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
303 304
    """

305 306 307
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
308

309 310
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
311

312
    Args:
313
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
314
                        the data type is float32 or float64.
315
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
316 317 318 319
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

320

321 322
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
323

324 325 326
    Examples:

      .. code-block:: python
327

328
          import paddle
329

330
          DATATYPE = "float32"
331

332 333 334
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
335

336 337
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
338

339 340 341 342 343 344 345 346 347 348 349 350 351
    """
    check_variable_and_dtype(anchor, 'anchor', ['float32', 'float64'],
                             'npair_loss')
    check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                             'positive')
    check_variable_and_dtype(labels, 'labels', ['float32', 'float64', 'int64'],
                             'labels')
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

352 353 354
    labels = paddle.equal(labels, paddle.transpose(labels,
                                                   perm=[1,
                                                         0])).astype('float32')
355 356 357 358 359 360
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) \
             + paddle.mean(paddle.sum(paddle.square(positive), 1))
    l2loss = l2loss * Beta * l2_reg

361 362 363 364 365 366 367
    similarity_matrix = paddle.matmul(anchor,
                                      positive,
                                      transpose_x=False,
                                      transpose_y=True)
    softmax_ce = fluid_softmax_with_cross_entropy(logits=similarity_matrix,
                                                  label=labels,
                                                  soft_label=True)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
391 392
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
393 394 395 396 397 398 399 400 401 402 403 404 405

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
406
    if in_dygraph_mode():
407 408
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
409 410
        return square_out
    elif _in_legacy_dygraph():
411 412
        minus_out = _legacy_C_ops.elementwise_sub(input, label)
        square_out = _legacy_C_ops.square(minus_out)
413 414 415 416 417 418 419 420
        return square_out

    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'square_error_cost')
    check_variable_and_dtype(label, "label", ['float32', 'float64'],
                             'square_error_cost')
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
421 422 423 424 425 426
    helper.append_op(type='elementwise_sub',
                     inputs={
                         'X': [input],
                         'Y': [label]
                     },
                     outputs={'Out': [minus_out]})
427 428

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
429 430 431
    helper.append_op(type='square',
                     inputs={'X': [minus_out]},
                     outputs={'Out': [square_out]})
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    return square_out


def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance

    Returns:
	Tuple:

        distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
        sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

517 518 519 520
        helper.append_op(type="sequence_erase",
                         inputs={"X": [input]},
                         outputs={"Out": [erased_input]},
                         attrs={"tokens": ignored_tokens})
521 522
        input = erased_input

523 524 525 526
        helper.append_op(type="sequence_erase",
                         inputs={"X": [label]},
                         outputs={"Out": [erased_label]},
                         attrs={"tokens": ignored_tokens})
527 528
        label = erased_label

Z
zhiboniu 已提交
529
    if in_dygraph_mode():
530 531
        return _C_ops.edit_distance(input, label, input_length, label_length,
                                    normalized)
Z
zhiboniu 已提交
532

533 534 535 536 537 538 539 540
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
541 542 543 544 545 546 547
    helper.append_op(type="edit_distance",
                     inputs=this_inputs,
                     outputs={
                         "Out": [edit_distance_out],
                         "SequenceNum": [sequence_num]
                     },
                     attrs={"normalized": normalized})
548 549 550 551

    return edit_distance_out, sequence_num


552 553 554 555
def binary_cross_entropy(input,
                         label,
                         weight=None,
                         reduction='mean',
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

615 616
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
617
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
618
            print(output)  # [0.65537095]
619 620 621 622 623 624 625 626

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

J
Jiabin Yang 已提交
627
    if in_dygraph_mode():
628
        out = _C_ops.bce_loss(input, label)
629
        if weight is not None:
630
            out = _C_ops.multiply(out, weight, 'axis', -1)
631 632

        if reduction == 'sum':
633
            return _C_ops.sum(out, [], None, False)
634

635
        elif reduction == 'mean':
636
            return _C_ops.mean_all(out)
637 638 639
        else:
            return out
    else:
J
Jiabin Yang 已提交
640
        if _in_legacy_dygraph():
641
            out = _legacy_C_ops.bce_loss(input, label)
J
Jiabin Yang 已提交
642
            if weight is not None:
643
                out = _legacy_C_ops.elementwise_mul(out, weight, 'axis', -1)
J
Jiabin Yang 已提交
644
            if reduction == 'sum':
645 646
                return _legacy_C_ops.reduce_sum(out, 'dim', [0], 'keep_dim',
                                                False, "reduce_all", True)
J
Jiabin Yang 已提交
647
            elif reduction == 'mean':
648
                return _legacy_C_ops.mean(out)
J
Jiabin Yang 已提交
649 650 651
            else:
                return out
        else:
652 653 654 655
            check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                     'binary_cross_entropy')
            check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                     'binary_cross_entropy')
J
Jiabin Yang 已提交
656 657 658 659

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
660 661 662 663 664 665
            helper.append_op(type='bce_loss',
                             inputs={
                                 'X': [input],
                                 'Label': [label],
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
                        "The weight is not a Tensor, please convert to Tensor.")

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
681 682


683 684 685 686 687 688
def binary_cross_entropy_with_logits(logit,
                                     label,
                                     weight=None,
                                     reduction='mean',
                                     pos_weight=None,
                                     name=None):
689
    r"""
690 691 692 693 694 695 696 697 698 699 700 701 702
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
703
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
704

705
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
706 707

    .. math::
708
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
709

N
Noel 已提交
710
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
711 712 713
    we reformulate the loss as follows:

    .. math::
714
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
759

760 761
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
762
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
763
            print(output)  # [0.45618808]
764 765 766 767 768 769 770 771

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

772
    if in_dygraph_mode():
773 774 775 776
        one = _C_ops.full([1], float(1.0), core.VarDesc.VarType.FP32,
                          _current_expected_place())
        out = _C_ops.sigmoid_cross_entropy_with_logits(logit, label, False,
                                                       -100)
777
        if pos_weight is not None:
778 779 780
            log_weight = _C_ops.add(
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one)
            out = _C_ops.multiply(out, log_weight)
781
        if weight is not None:
782
            out = _C_ops.multiply(out, weight)
783 784

        if reduction == "sum":
785
            return _C_ops.sum(out, [], None, False)
786
        elif reduction == "mean":
787
            return _C_ops.mean_all(out)
H
hong 已提交
788
        else:
789 790 791
            return out
    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
792 793 794 795
        _legacy_C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu',
                                    False, 'dtype', one.dtype, 'str_value',
                                    '1.0', 'shape', [1])
        out = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
796
        if pos_weight is not None:
797 798 799 800
            log_weight = _legacy_C_ops.elementwise_add(
                _legacy_C_ops.elementwise_mul(
                    label, _legacy_C_ops.elementwise_sub(pos_weight, one)), one)
            out = _legacy_C_ops.elementwise_mul(out, log_weight)
801
        if weight is not None:
802
            out = _legacy_C_ops.elementwise_mul(out, weight)
803 804

        if reduction == "sum":
805
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
806
        elif reduction == "mean":
807
            return _legacy_C_ops.mean(out)
808 809 810
        else:
            return out

811 812 813 814
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
815 816 817 818
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

819
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
820 821
        logit, label, name=sigmoid_name)

Z
zhiboniu 已提交
822
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
823
    if pos_weight is not None:
824 825 826
        check_variable_and_dtype(pos_weight, 'pos_weight',
                                 ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
827
        log_weight = paddle.add(
828
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one)
829 830 831 832
        pos_weight_name = name if reduction == 'none' and weight is None else None
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
833 834
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
835 836 837 838 839 840 841 842 843 844
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
def hsigmoid_loss(input,
                  label,
                  num_classes,
                  weight,
                  bias=None,
                  path_table=None,
                  path_code=None,
                  is_sparse=False,
                  name=None):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
912 913 914 915 916
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
917 918 919
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
920 921 922 923
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
924 925

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
926 927 928 929
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
930
    """
931
    if in_dygraph_mode():
932 933
        out, _, _ = _C_ops.hierarchical_sigmoid(input, weight, label,
                                                path_table, path_code, bias,
934 935 936 937 938 939 940
                                                num_classes, is_sparse, 0, [],
                                                [], [], is_sparse)
        return out
    elif _in_legacy_dygraph():
        out, _, _ = _legacy_C_ops.hierarchical_sigmoid(
            input, weight, label, path_table, path_code, bias, 'num_classes',
            num_classes, 'is_sparse', is_sparse, 'remote_prefetch', is_sparse)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        return out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'hsigmoid_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'hsigmoid_loss')
    if bias is not None:
        check_variable_and_dtype(bias, 'bias', ['float32', 'float64'],
                                 'hsigmoid_loss')
    if path_table is not None:
        check_variable_and_dtype(path_table, 'path_table', ['int64'],
                                 'hsigmoid_loss')
    if path_code is not None:
        check_variable_and_dtype(path_code, 'path_code', ['int64'],
                                 'hsigmoid_loss')

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

978 979 980 981
    helper.append_op(type="hierarchical_sigmoid",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
982 983 984
    return out


985
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
986
    r"""
987
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
988 989 990 991 992 993
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

994
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
995 996 997 998 999 1000


    where z_i is given by:

    .. math::

1001 1002
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
1003
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
1004
        \end{array} \right.
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1018
        delta (float, optional): Specifies the hyperparameter delta to be used.
1019 1020 1021 1022 1023 1024 1025
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1026
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
1038
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1039
            print(output)
1040
    """
1041 1042 1043 1044
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'smooth_l1_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'smooth_l1_loss')
1045

1046
    if in_dygraph_mode():
1047
        out, residual = _C_ops.huber_loss(input, label, delta)
1048 1049 1050 1051 1052 1053
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        helper.append_op(type='huber_loss',
                         inputs={
                             'X': input,
                             'Y': label
                         },
                         outputs={
                             'Out': out,
                             'Residual': residual
                         },
                         attrs={'delta': delta})
1064 1065 1066 1067 1068 1069 1070 1071

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1072
        return paddle.mean(out)
1073
    elif reduction == 'sum':
1074
        return paddle.sum(out)
1075 1076


1077 1078
def margin_ranking_loss(input,
                        other,
1079
                        label,
1080 1081 1082
                        margin=0.0,
                        reduction='mean',
                        name=None):
1083
    r"""
1084

1085
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1086

1087
    .. math::
1088
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1105
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1106 1107 1108 1109
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1110
    Returns:
1111
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1112 1113 1114 1115 1116

    Examples:

        .. code-block:: python

1117 1118
            import paddle

Z
Zhong Hui 已提交
1119 1120 1121
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1122
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1123
            print(loss) # [0.75]
1124
    """
1125 1126 1127 1128
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
1129
    if in_dygraph_mode():
1130 1131
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1132 1133
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1134 1135
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1136
        if reduction == 'sum':
1137
            return _C_ops.sum(out, [], None, False)
1138
        elif reduction == 'mean':
1139
            return _C_ops.mean_all(out)
1140 1141
        return out
    elif _in_legacy_dygraph():
1142 1143
        out = _legacy_C_ops.elementwise_sub(other, input)
        out = _legacy_C_ops.elementwise_mul(out, label)
1144 1145
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1146 1147
            out = _legacy_C_ops.elementwise_add(out, margin)
        out = _legacy_C_ops.relu(out)
1148
        if reduction == 'sum':
1149
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
1150
        elif reduction == 'mean':
1151
            return _legacy_C_ops.mean(out)
1152 1153 1154
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
1155 1156 1157 1158 1159 1160
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(other, 'other', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'margin_rank_loss')
1161

1162
    out = paddle.subtract(other, input)
1163
    out = paddle.multiply(out, label)
1164 1165 1166

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1167
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1168 1169 1170 1171 1172
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
1173 1174 1175
        helper.append_op(type="relu",
                         inputs={"X": out},
                         outputs={"Out": result_out})
1176 1177 1178 1179
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
1180 1181 1182 1183
        helper.append_op(type="reduce_sum",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs=attrs)
1184 1185 1186
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
1187 1188 1189 1190
        helper.append_op(type="mean",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs={})
1191 1192 1193
        return result_out


1194
def l1_loss(input, label, reduction='mean', name=None):
1195
    r"""
1196
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1197

1198
    If `reduction` set to ``'none'``, the loss is:
1199 1200

    .. math::
1201
        Out = \lvert input - label \rvert
1202

1203
    If `reduction` set to ``'mean'``, the loss is:
1204 1205

    .. math::
1206
        Out = MEAN(\lvert input - label \rvert)
1207

1208
    If `reduction` set to ``'sum'``, the loss is:
1209 1210

    .. math::
1211
        Out = SUM(\lvert input - label \rvert)
1212

1213

1214
    Parameters:
N
Noel 已提交
1215 1216
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1217
        reduction (str, optional): Indicate the reduction to apply to the loss,
1218
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1219 1220 1221
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1222 1223
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1224

1225
    Returns:
1226 1227 1228
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1229

1230 1231
    Examples:
        .. code-block:: python
N
Noel 已提交
1232

1233
            import paddle
1234

1235 1236
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1237

1238
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1239
            print(l1_loss.numpy())
1240 1241
            # [0.35]

1242
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1243
            print(l1_loss.numpy())
1244 1245 1246
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

1247
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1248
            print(l1_loss.numpy())
1249 1250 1251 1252 1253 1254 1255
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

1256
    if in_dygraph_mode():
1257 1258
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1259
        if reduction == 'mean':
1260
            return _C_ops.mean_all(unreduced)
1261
        elif reduction == 'sum':
1262
            return _C_ops.sum(unreduced, [], None, False)
1263 1264
        else:
            return unreduced
1265
    elif _in_legacy_dygraph():
1266 1267 1268 1269 1270
        unreduced = _elementwise_op_in_dygraph(input,
                                               label,
                                               axis=-1,
                                               act='abs',
                                               op_name='elementwise_sub')
1271
        if reduction == 'mean':
1272
            return _legacy_C_ops.mean(unreduced)
1273
        elif reduction == 'sum':
1274 1275
            return _legacy_C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim',
                                            False, 'reduce_all', True)
1276 1277 1278
        else:
            return unreduced

1279 1280 1281 1282 1283 1284
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
    check_variable_and_dtype(label, 'label',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
1285 1286

    if reduction == 'sum':
1287
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1288 1289
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1290
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1291 1292
        return paddle.mean(unreduced, name=name)
    else:
1293 1294 1295 1296
        return paddle.fluid.layers.elementwise_sub(input,
                                                   label,
                                                   act='abs',
                                                   name=name)
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1319 1320
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1335

1336 1337 1338 1339
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1340 1341 1342 1343 1344
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1345
                log_out = log_softmax(input)
1346
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1347
                result = nll_loss(log_out, label)
1348
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1349 1350 1351 1352 1353 1354 1355 1356 1357
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1358 1359
        raise ValueError(
            'Expected 2 or more dimensions (got {})'.format(input_dims))
1360 1361
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1362 1363
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1364 1365
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1366
            out_shape = [n] + input_shape[2:]
1367 1368
        out, total_weight = _C_ops.nll_loss(input, label, weight, ignore_index,
                                            reduction)
Z
zyfncg 已提交
1369
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1370
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1371
        return out
1372
    elif _in_legacy_dygraph():
1373
        if input_dims != 2 and input_dims != 4:
1374 1375 1376
            input, _ = _legacy_C_ops.reshape2(input, None, 'shape',
                                              [n, c, 1, -1])
            label, _ = _legacy_C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1377
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1378

1379 1380 1381
        out, total_weight = _legacy_C_ops.nll_loss(input, label, weight,
                                                   'ignore_index', ignore_index,
                                                   'reduction', reduction)
1382
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1383
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', out_shape)
1384 1385 1386 1387 1388 1389 1390 1391 1392
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1393 1394
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

1405 1406 1407 1408
    helper.append_op(type='nll_loss',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
1409 1410 1411 1412
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1413 1414


1415
def kl_div(input, label, reduction='mean', name=None):
1416
    r"""
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
1428
    the same shape as input, loss in each point is calculated
1429
    separately and no reduction is applied.
1430

1431 1432
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
1433

1434 1435
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
1436 1437

    While :attr:`reduction` is :attr:`batchmean`, output loss is
1438 1439 1440 1441
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
1442
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1443 1444 1445 1446 1447 1448 1449 1450 1451
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
1452
        name(str, optional): Name for the operation (optional, default is None). For more information,
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
1464

1465 1466 1467 1468
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
1469
            # 'batchmean' reduction, loss shape will be [1]
1470 1471
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='batchmean')
L
LielinJiang 已提交
1472
            # shape=[1]
1473

1474
            # 'mean' reduction, loss shape will be [1]
1475 1476
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='mean')
1477 1478 1479
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1480 1481
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='sum')
1482 1483 1484
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1485 1486
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='none')
1487 1488 1489
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1490 1491 1492 1493
    # ugly type promotion
    if fluid.data_feeder.convert_dtype(
            input.dtype) == 'float32' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float64':
1494
        input = paddle.cast(input, 'float64')
L
LielinJiang 已提交
1495 1496 1497
    elif fluid.data_feeder.convert_dtype(
            input.dtype) == 'float64' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float32':
1498
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1499

1500
    if in_dygraph_mode():
1501
        out = _C_ops.kldiv_loss(input, label, 'none')
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
    elif _in_legacy_dygraph():
1512
        out = _legacy_C_ops.kldiv_loss(input, label, 'reduction', 'none')
1513 1514 1515 1516 1517 1518 1519 1520
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1521 1522 1523 1524
        return out

    helper = LayerHelper('kl_div', **locals())

1525 1526
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1527 1528 1529
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
1530 1531 1532 1533 1534 1535 1536
    helper.append_op(type='kldiv_loss',
                     inputs={
                         'X': input,
                         'Target': label
                     },
                     outputs={'Loss': loss},
                     attrs={'reduction': 'none'})
1537 1538 1539 1540 1541 1542 1543 1544

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1545 1546 1547
    return loss


1548
def mse_loss(input, label, reduction='mean', name=None):
1549
    r"""
1550
    Accept input predications and label and returns the mean square error.
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1580
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1581

1582 1583 1584
    Examples:

        .. code-block:: python
1585

1586 1587
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1588 1589
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1590
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1591
            print(output)
1592 1593 1594 1595 1596 1597 1598 1599 1600
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
1601
    if not in_dynamic_mode():
1602 1603 1604 1605
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'mse_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'mse_loss')
1606 1607

    if reduction == 'none':
1608
        return paddle.square(paddle.subtract(input, label), name=name)
1609
    elif reduction == 'mean':
1610 1611
        return paddle.mean(paddle.square(paddle.subtract(input, label)),
                           name=name)
1612
    else:
1613
        return paddle.sum(paddle.square(paddle.subtract(input, label)),
1614
                          name=name)
1615 1616


1617 1618 1619 1620 1621
def ctc_loss(log_probs,
             labels,
             input_lengths,
             label_lengths,
             blank=0,
1622
             reduction='mean',
H
Hui Zhang 已提交
1623
             norm_by_times=False):
1624 1625
    """

1626 1627 1628
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1629 1630 1631
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1632
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1633 1634 1635 1636 1637
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1638
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1639

1640 1641
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1681 1682 1683 1684
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1685

1686 1687 1688 1689
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1690
                reduction='none')
1691
            print(loss)  #[3.9179852 2.9076521]
1692

1693 1694 1695 1696 1697
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1698
            print(loss)  #[1.1376063]
1699 1700 1701

    """

1702
    loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
H
Hui Zhang 已提交
1703
                                    input_lengths, label_lengths)
1704

Z
zhiboniu 已提交
1705
    loss_out = paddle.squeeze(loss_out, [-1])
1706 1707
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1708
        loss_out = paddle.mean(loss_out / label_lengths)
1709 1710 1711 1712 1713
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1714 1715 1716 1717 1718 1719 1720 1721 1722
def margin_cross_entropy(logits,
                         label,
                         margin1=1.0,
                         margin2=0.5,
                         margin3=0.0,
                         scale=64.0,
                         group=None,
                         return_softmax=False,
                         reduction='mean'):
1723
    r"""
1724 1725
    .. math::

1726
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1727

1728
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1729 1730 1731 1732
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1733 1734 1735 1736 1737 1738
        The API supports single GPU and multi GPU, and don't supports CPU.

        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1739 1740

    Args:
G
Guoxia Wang 已提交
1741
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1742
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1743 1744 1745 1746 1747
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1748
        group (Group, optional): The group instance return by paddle.distributed.new_group
1749 1750
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
            `return_softmax` is False, otherwise the tuple \
            (loss, softmax), softmax is shard_softmax when \
            using model parallel, otherwise softmax is in \
            the same shape with input logits. If ``reduction == None``, \
            the shape of loss is ``[N, 1]``, otherwise the shape is ``[1]``.

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1769
        :name: code-example1
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1818
        :name: code-example2
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

1865
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
1909 1910 1911 1912 1913 1914 1915
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1916 1917
        return

1918
    ring_id = 0
1919 1920
    rank = 0
    nranks = 1
1921 1922 1923 1924 1925 1926 1927 1928
    if group != False:
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1929 1930 1931 1932 1933

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
1934
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
1935 1936 1937 1938
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

1939
    if in_dygraph_mode():
1940 1941 1942 1943
        softmax, loss = _C_ops.margin_cross_entropy(logits, label,
                                                    return_softmax, ring_id,
                                                    rank, nranks, margin1,
                                                    margin2, margin3, scale)
1944 1945 1946 1947 1948 1949 1950 1951
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
1952
    elif _in_legacy_dygraph():
1953
        softmax, loss = _legacy_C_ops.margin_cross_entropy(
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks,
            'margin1', margin1, 'margin2', margin2, 'margin3', margin3, 'scale',
            scale, 'return_softmax', return_softmax)
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    check_variable_and_dtype(logits, 'logits',
                             ['float16', 'float32', 'float64'],
                             'margin_cross_entropy')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'],
                             'margin_cross_entropy')

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    helper.append_op(type=op_type,
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs={
                         'Softmax': softmax,
                         'Loss': loss
                     },
                     attrs={
                         'return_softmax': return_softmax,
                         'ring_id': ring_id,
                         'rank': rank,
                         'nranks': nranks,
                         'margin1': margin1,
                         'margin2': margin2,
                         'margin3': margin3,
                         'scale': scale,
                     })
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


2008 2009 2010 2011
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2012 2013 2014
    reason=
    ('Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
     'and "paddle.nn.functional.cross_entropy" is different.'))
2015 2016 2017 2018 2019 2020 2021
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100,
                               numeric_stable_mode=True,
                               return_softmax=False,
                               axis=-1):
2022
    r"""
2023 2024
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2025 2026 2027 2028 2029 2030
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2031 2032 2033
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2060 2061 2062
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2063 2064 2065 2066 2067
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2068
                                      if :attr:`soft_label` is set to :attr:`False`.
2069 2070 2071
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2072 2073 2074
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2075 2076 2077 2078 2079
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2080
        axis (int, optional): The index of dimension to perform softmax calculations. It
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
2107 2108 2109 2110 2111
    return fluid_softmax_with_cross_entropy(logits, label, soft_label,
                                            ignore_index, numeric_stable_mode,
                                            return_softmax, axis)


2112 2113 2114 2115
def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
2116 2117 2118
                  reduction='mean',
                  soft_label=False,
                  axis=-1,
2119
                  use_softmax=True,
2120
                  name=None):
2121
    r"""
2122 2123 2124
    By default, this operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2125

2126
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
2127

2128 2129
    By default, this operator will calculate the mean of the result, and you can also affect
    the default behavior by using the reduction parameter. Please refer to the part of
2130
    parameters for details.
2131

2132
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
2133
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2134
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2135

2136
    The calculation of this operator includes the following two steps.
2137

2138
    - **1.softmax cross entropy**
2139

2140
        1. Hard label (each sample can only be assigned into one category)
2141

2142
        1.1. when use_softmax=True
2143

2144 2145
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2188
                \\loss_j=loss_j*weight[label_j]
2189

2190

2191 2192 2193 2194 2195 2196 2197
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2198
            2.1 if the ``reduction`` parameter is ``none``
2199 2200 2201

                Return the previous result directly

2202
            2.2 if the ``reduction`` parameter is ``sum``
2203 2204 2205 2206 2207 2208

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2209 2210
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2211

2212
            2.3.1. If the  ``weight``  parameter is ``None``
2213 2214 2215

                   Return the average value of the previous results

2216
            .. math::
2217 2218 2219 2220 2221 2222 2223 2224
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2225
            .. math::
2226
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2227 2228 2229

            2. Soft labels (soft_label = True)

2230
            .. math::
2231
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2232 2233


2234
    Parameters:
2235 2236 2237 2238

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
2239
        :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` .
2240

2241
            Note:
2242

2243
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
2244 2245 2246
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
2247

2248 2249 2250 2251 2252 2253
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2254
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2255 2256 2257 2258
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

2259 2260
            a manual rescaling weight given to each class.
            If given, has to be a Tensor of size C and the data type is float32, float64.
2261 2262 2263 2264 2265
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
2266 2267
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2268 2269 2270 2271 2272
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
2273 2274
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2275
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2276 2277
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2278

2279 2280
        - **soft_label** (bool, optional)

2281
            Indicate whether label is soft.
2282 2283 2284 2285
            Default is ``False``.

        - **axis** (int, optional)

2286 2287 2288
            The index of dimension to perform softmax calculations.
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2289 2290 2291 2292 2293 2294 2295
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
2296
        - **name** (str, optional)
2297 2298 2299

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
2300 2301 2302

    Returns:

2303 2304
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2305

2306
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2307

2308
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2309

2310
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2311

2312
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2313 2314


2315
    Examples:
2316 2317

        .. code-block:: python
2318 2319

            # hard labels
2320 2321 2322 2323 2324
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2325
            input =  paddle.rand([N, C], dtype='float64')
2326
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2327 2328
            weight = paddle.rand([C], dtype='float64')

2329 2330 2331 2332 2333 2334 2335 2336
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]

        .. code-block:: python
2337 2338

            # soft labels
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2352 2353 2354
                                                                  logits,
                                                                  labels,
                                                                  soft_label=True,
2355 2356 2357 2358
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
2359

2360 2361 2362 2363
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2364 2365 2366
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)
2367 2368 2369 2370 2371 2372
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
            "should be '-100', but received %s, which is not allowed." %
            ignore_index)

2373
    input_dims = len(list(input.shape))
2374 2375 2376
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2377 2378
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2379
        raise ValueError(
2380 2381 2382 2383
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2384

2385
    if in_dygraph_mode():
H
HydrogenSulfate 已提交
2386
        if soft_label == False:
2387 2388
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
H
HydrogenSulfate 已提交
2389 2390 2391
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
2392 2393
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
H
HydrogenSulfate 已提交
2394
            if label_max >= input.shape[axis]:
2395 2396
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
F
fwenguang 已提交
2397
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2398
            if soft_label == False:
2399
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2400 2401 2402 2403
                    input, valid_label, 'soft_label', soft_label,
                    'ignore_index', ignore_index, 'numeric_stable_mode', True,
                    'axis', axis, 'use_softmax', use_softmax)
            else:
2404
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2405 2406 2407
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2408
        else:
2409 2410 2411
            _, out = _C_ops.cross_entropy_with_softmax(input, label, soft_label,
                                                       use_softmax, True,
                                                       ignore_index, axis)
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
            if soft_label == True:
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2430
                out = _C_ops.multiply(out, weight_gather_reshape)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
                        axis] == 1:
                    # TODO: Temporarily use squeeze instead of squeeze_
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
                if axis != -1 and axis != valid_label.ndim - 1:
                    temp_perm = list(range(axis % valid_label.ndim)) \
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
                                + [axis % valid_label.ndim]
2450
                    weight_gather = _C_ops.gather_nd(
2451 2452
                        weight, valid_label.transpose(temp_perm))
                else:
2453 2454 2455
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
                weight_gather = _C_ops.multiply(weight_gather,
                                                ignore_weight_mask)
2456 2457 2458 2459
                input_shape = list(label.shape)
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
2460
                out = _C_ops.multiply(out, weight_gather_reshape)
2461 2462 2463 2464 2465

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2466
            return _C_ops.sum(out, [], None, False)
2467 2468 2469 2470 2471 2472 2473 2474
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
            if ignore_index >= 0:
2475
                out_sum = _C_ops.sum(out, [], None, False)
2476 2477 2478 2479 2480 2481
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                mask = (label != ignore_index)
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2482
                    count = _C_ops.sum(mask, [], None, False)
2483 2484 2485
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2486 2487 2488
                    weight_ignored = _C_ops.multiply(mask,
                                                     weight_gather_reshape)
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2489 2490 2491
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2492 2493 2494
                out_sum = _C_ops.sum(out, [], None, False)
                total_weight = _C_ops.sum(weight_gather_reshape, [], None,
                                          False)
2495 2496
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2497
                return _C_ops.mean_all(out)
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

    elif _in_legacy_dygraph():
        if soft_label == False:
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
            if label_max >= input.shape[axis]:
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
            if soft_label == False:
2518
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2519 2520 2521 2522
                    input, valid_label, 'soft_label', soft_label,
                    'ignore_index', ignore_index, 'numeric_stable_mode', True,
                    'axis', axis, 'use_softmax', use_softmax)
            else:
2523
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2524 2525 2526
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2527
        else:
2528
            _, out = _legacy_C_ops.softmax_with_cross_entropy(
2529 2530 2531
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
2532

2533
        if weight is not None:
2534

H
HydrogenSulfate 已提交
2535
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2536 2537
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
2538
                # weight's shape is C, where C is class num.
2539 2540
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2541 2542 2543 2544 2545
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
2546 2547 2548 2549
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2550
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2551 2552

            else:
2553 2554 2555 2556 2557 2558 2559
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

H
HydrogenSulfate 已提交
2560 2561
                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
H
HydrogenSulfate 已提交
2562
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2563
                        axis] == 1:
H
HydrogenSulfate 已提交
2564
                    # TODO: Temporarily use squeeze instead of squeeze_
H
HydrogenSulfate 已提交
2565 2566
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
H
HydrogenSulfate 已提交
2567
                if axis != -1 and axis != valid_label.ndim - 1:
2568
                    temp_perm = list(range(axis % valid_label.ndim)) \
2569
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
H
HydrogenSulfate 已提交
2570
                                + [axis % valid_label.ndim]
2571
                    weight_gather = _legacy_C_ops.gather_nd(
2572 2573
                        weight, valid_label.transpose(temp_perm))
                else:
2574 2575 2576
                    weight_gather = _legacy_C_ops.gather_nd(weight, valid_label)
                weight_gather = _legacy_C_ops.elementwise_mul(
                    weight_gather, ignore_weight_mask)
2577
                input_shape = list(label.shape)
2578 2579
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
2580
                out = paddle.cast(out, weight_gather_reshape.dtype)
2581
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2582

2583
        if reduction == "sum":
H
HydrogenSulfate 已提交
2584
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2585 2586
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2587
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
2588
        elif reduction == "mean":
H
HydrogenSulfate 已提交
2589 2590 2591 2592 2593 2594
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
2595
            if ignore_index >= 0:
2596
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
2597 2598 2599
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
2600
                mask = (label != ignore_index)
2601
                if weight is None:
2602
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2603
                    count = _legacy_C_ops.reduce_sum(mask, 'reduce_all', True)
2604
                    ret = out_sum / (count + (count == 0.0))
2605 2606
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2607
                    weight_ignored = _legacy_C_ops.elementwise_mul(
2608
                        mask, weight_gather_reshape)
2609 2610
                    weight_sum = _legacy_C_ops.reduce_sum(
                        weight_ignored, 'reduce_all', True)
2611
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2612 2613
                return ret
            elif weight is not None:
2614 2615 2616
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
                total_weight = _legacy_C_ops.reduce_sum(weight_gather_reshape,
                                                        'reduce_all', True)
2617
                return out_sum / (total_weight + (total_weight == 0.0))
2618
            else:
2619
                return _legacy_C_ops.mean(out)
2620
        else:
2621 2622
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
2623
            return out
2624

F
feifei-111 已提交
2625
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
2626 2627
                             'softmax_cross_entropy')
    check_variable_and_dtype(
2628 2629
        label, 'label',
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
2630
        'softmax_cross_entropy')
2631 2632 2633 2634 2635
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
2636
        'use_softmax': use_softmax
2637 2638 2639 2640
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
2641 2642 2643 2644 2645

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
2646 2647 2648 2649 2650 2651 2652
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': input,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
2653

2654
    if weight is not None:
2655 2656
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'softmax_cross_entropy')
2657
        weight_name = name if reduction == 'none' else None
2658 2659
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
2660
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2661 2662 2663
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2664 2665 2666 2667
            weight_gather = paddle.matmul(x=paddle.cast(label, weight.dtype),
                                          y=weight,
                                          transpose_x=False,
                                          transpose_y=True)
2668 2669 2670 2671 2672

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
2673 2674
            if input.shape[axis] != weight.shape[-1]:
                raise ValueError("input's class_dimension({}) must equal to "
2675 2676
                                 "weight's class_dimension({}) "
                                 "when weight is provided" \
2677
                                 .format(input.shape[axis], weight.shape[-1]))
H
HydrogenSulfate 已提交
2678

H
HydrogenSulfate 已提交
2679
            valid_label = paddle.multiply(
2680
                paddle.cast(label != ignore_index, dtype=label.dtype), label)
H
HydrogenSulfate 已提交
2681 2682
            ignore_weight_mask = paddle.cast((label != ignore_index),
                                             input.dtype)
H
HydrogenSulfate 已提交
2683
            if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2684 2685
                    axis] == 1:
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
2686
            if axis != -1 and axis != valid_label.ndim - 1:
2687
                temp_perm = list(range(axis % valid_label.ndim)) \
H
HydrogenSulfate 已提交
2688
                            + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
2689 2690 2691 2692 2693
                            + [axis % valid_label.ndim]
                weight_gather = paddle.gather_nd(
                    weight, paddle.transpose(valid_label, temp_perm))
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2694 2695
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

2696 2697
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
2698
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2699

2700 2701 2702
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
2703
        if ignore_index >= 0:
2704
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2705 2706 2707
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
2708 2709 2710 2711
            mask = (label != ignore_index)
            if (weight is None):
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
2712
                ret = out_sum / (count + (count == 0.0))
2713 2714 2715 2716
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
2717
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
2718 2719
            return ret
        elif weight is not None:
2720 2721
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
2722
            return out_sum / (total_weight + (total_weight == 0.0))
2723 2724
        else:
            return paddle.mean(out, name=name)
2725

2726
    else:
2727 2728 2729
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

2730
        return out
2731 2732 2733 2734 2735 2736 2737 2738 2739


def sigmoid_focal_loss(logit,
                       label,
                       normalizer=None,
                       alpha=0.25,
                       gamma=2.0,
                       reduction='sum',
                       name=None):
2740
    r"""
2741 2742 2743 2744 2745 2746
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2747
    This operator measures focal loss function as follows:
2748 2749

    .. math::
2750
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2751

2752
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2753 2754 2755 2756 2757

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2758
           Out = \frac{Out}{normalizer}
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
2776
            For object detection task, it is the number of positive samples.
2777 2778
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
2779
            it should be between 0 and 1.  Default value is set to 0.25.
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2804
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2805
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2806
            print(output)  # [0.65782464]
2807 2808 2809 2810 2811 2812 2813 2814 2815

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

    if normalizer is not None:
2816 2817
        check_variable_and_dtype(normalizer, 'normalizer',
                                 ['float32', 'float64'], 'sigmoid_focal_loss')
2818 2819 2820 2821
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2822 2823
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}."
                .format(normalizer_dims))
2824

2825 2826
    if in_dygraph_mode():
        place = _current_expected_place()
2827
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
2828

2829 2830
        loss = _C_ops.sigmoid_cross_entropy_with_logits(logit, label, False,
                                                        -100)
2831

2832
        pred = _C_ops.sigmoid(logit)
2833

2834 2835 2836 2837
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
            _C_ops.multiply(_C_ops.subtract(one, pred),
                            _C_ops.subtract(one, label)))
2838 2839

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2840 2841 2842 2843 2844
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
            _C_ops.multiply(_C_ops.subtract(one, alpha),
                            _C_ops.subtract(one, label)))
        loss = _C_ops.multiply(alpha_t, loss)
2845 2846

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2847 2848
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
2849 2850

        if normalizer is not None:
2851
            loss = _C_ops.divide(loss, normalizer)
2852 2853

        if reduction == "sum":
2854
            return _C_ops.sum(loss, [], None, False)
2855
        elif reduction == "mean":
2856
            return _C_ops.mean_all(loss)
2857 2858 2859 2860 2861

        return loss

    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
2862 2863 2864 2865
        _legacy_C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu',
                                    False, 'dtype', one.dtype, 'str_value',
                                    '1.0', 'shape', logit.shape)
        loss = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
2866

2867
        pred = _legacy_C_ops.sigmoid(logit)
2868

2869 2870 2871 2872 2873
        p_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(pred, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, pred),
                _legacy_C_ops.elementwise_sub(one, label)))
2874 2875

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2876 2877 2878 2879 2880 2881
        alpha_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(alpha, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, alpha),
                _legacy_C_ops.elementwise_sub(one, label)))
        loss = _legacy_C_ops.elementwise_mul(alpha_t, loss)
2882 2883

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2884 2885 2886
        gamma_t = _legacy_C_ops.elementwise_pow(
            _legacy_C_ops.elementwise_sub(one, p_t), gamma)
        loss = _legacy_C_ops.elementwise_mul(gamma_t, loss)
2887 2888

        if normalizer is not None:
2889
            loss = _legacy_C_ops.elementwise_div(loss, normalizer)
2890 2891

        if reduction == "sum":
2892
            return _legacy_C_ops.reduce_sum(loss, 'reduce_all', True)
2893
        elif reduction == "mean":
2894
            return _legacy_C_ops.mean(loss)
2895 2896 2897

        return loss

2898 2899 2900 2901
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'sigmoid_focal_loss')
2902 2903 2904 2905 2906 2907 2908

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
        logit, label, reduction='none', name=bce_name)

Z
zhiboniu 已提交
2909
    pred = paddle.nn.functional.sigmoid(logit)
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
2928 2929


Y
yangguohao 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
def multi_label_soft_margin_loss(input,
                                 label,
                                 weight=None,
                                 reduction="mean",
                                 name=None):
    r"""

        Parameters:
            input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
            label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
            weight (Tensor,optional): a manual rescaling weight given to each class.
                    If given, has to be a Tensor of size C and the data type is float32, float64.
                    Default is ``'None'`` .
            reduction (str, optional): Indicate how to average the loss by batch_size,
                    the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                    If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                    If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                    Default: ``'mean'``
            name (str, optional): Name for the operation (optional, default is None).
                    For more information, please refer to :ref:`api_guide_Name`.

	Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            weight:N-D Tensor, the shape is [N,1]
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

	Returns:
            Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.

	Examples:
            .. code-block:: python

                import paddle
                import paddle.nn.functional as F
                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                # label elements in {1., -1.}
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
                loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])
                loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
                print(loss)
                # Tensor([1.54908717])
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

    if not (input.shape == label.shape):
        raise ValueError("The input and label should have same dimension,"
                         "but received {}!={}".format(input.shape, label.shape))

    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')

    loss = -(label * paddle.nn.functional.log_sigmoid(input) +
             (1 - label) * paddle.nn.functional.log_sigmoid(-input))

    if weight is not None:
        if not _non_static_mode():
            check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                     'multilabel_soft_margin_loss')
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

3089
    if not _non_static_mode():
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'hinge_embedding_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'hinge_embedding_loss')

    zero_ = paddle.zeros([1], dtype=input.dtype)
    loss = paddle.where(label == 1., input, zero_) + \
           paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212


def cosine_embedding_loss(input1,
                          input2,
                          label,
                          margin=0,
                          reduction='mean',
                          name=None):
    r"""
    This operator computes the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

     Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
            "1D target tensor expected, multi-target not supported")

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
            "different sizes")

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
            "The data type of input Variable must be 'float32' or 'float64'")
    if label.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241


def triplet_margin_with_distance_loss(input,
                                      positive,
                                      negative,
                                      distance_function=None,
                                      margin=1.0,
                                      swap=False,
                                      reduction='mean',
                                      name=None):
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3242
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3258

Y
yangguohao 已提交
3259 3260
	    margin (float, optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0.
3261

Y
yangguohao 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3273

Y
yangguohao 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError("'reduction' in 'triplet_margin_with_distance_loss' "
                         "should be 'sum', 'mean' or 'none', "
                         "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = distance_function if distance_function is not None \
        else paddle.nn.PairwiseDistance(2)

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
            "The distance functions should be checked.")

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460


def triplet_margin_loss(input,
                        positive,
                        negative,
                        margin=1.0,
                        p=2,
                        epsilon=1e-6,
                        swap=False,
                        reduction='mean',
                        name=None):
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539


def soft_margin_loss(input, label, reduction='mean', name=None):
    """
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        input (Tensor): The input predications tensor with shape: [N, *],
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
             Available dtype is float32, float64.

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is [1].

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)

            input_np = np.random.uniform(0.1, 0.8, size=(5, 5)).astype(np.float64)
            label_np = np.random.randint(0, 2, size=(5, 5)).astype(np.int64)
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

    if not _non_static_mode():
        fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                   ['float32', 'float64'],
                                                   'soft_margin_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss')

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to "
                         "label's shape")

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out