loss.py 159.0 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20 21 22
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
23
from ...tensor.manipulation import reshape
24
from ...fluid.layer_helper import LayerHelper
25
from ...fluid.framework import _varbase_creator
26
from ...static import Variable
27
from paddle.utils import deprecated
28
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
29
from paddle import in_dynamic_mode
Y
yangguohao 已提交
30
from paddle.framework import core, _non_static_mode
31 32 33 34 35 36
from ...fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _non_static_mode,
    _current_expected_place,
)
37

38 39
__all__ = []

40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
103 104 105 106 107 108

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
109 110
        label, axis=reduce_dim
    )
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
153
        return _C_ops.log_loss(input, label, epsilon)
154 155 156 157 158 159 160

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

161 162 163 164 165 166
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
167 168 169
    return loss


170 171 172 173 174 175 176 177 178
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
179 180
    r"""

181 182
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
183 184 185 186 187 188
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

189 190 191
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
192 193 194 195 196 197 198
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
199
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
200 201 202 203

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
204
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
205 206 207 208

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
209 210 211
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
212 213 214 215 216 217

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
218 219 220
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
221 222 223 224 225
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
226
                                      if :attr:`soft_label` is set to :attr:`False`.
227 228 229
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
230 231 232
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
233 234 235 236 237
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
238
        axis (int, optional): The index of dimension to perform softmax calculations. It
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
254 255 256 257 258

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
259
            print(out)
260 261
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
262 263 264
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
265
            softmax, backprop, loss = _legacy_C_ops.softmax_with_cross_entropy(
266 267 268 269 270 271 272 273 274 275 276
                logits,
                label,
                'soft_label',
                soft_label,
                'ignore_index',
                ignore_index,
                'numeric_stable_mode',
                numeric_stable_mode,
                'axis',
                axis,
            )
277 278
        else:
            if in_dygraph_mode():
279
                softmax, loss = _C_ops.cross_entropy_with_softmax(
280 281 282 283 284 285 286 287
                    logits,
                    label,
                    soft_label,
                    True,
                    numeric_stable_mode,
                    ignore_index,
                    axis,
                )
288
            if _in_legacy_dygraph():
289
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
290 291 292 293 294 295 296 297 298 299 300
                    logits,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    numeric_stable_mode,
                    'axis',
                    axis,
                )
301 302 303 304 305 306 307 308 309
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
310
        'axis': axis,
311 312 313 314 315 316 317 318 319
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
320 321 322 323 324 325
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits, 'Label': label},
        outputs=outputs,
        attrs=attrs,
    )
326 327 328 329 330 331 332 333

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
334 335
    """

336 337 338
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
339

340 341
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
342

343
    Args:
344
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
345
                        the data type is float32 or float64.
346
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
347 348 349 350
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

351

352 353
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
354

355 356 357
    Examples:

      .. code-block:: python
358

359
          import paddle
360

361
          DATATYPE = "float32"
362

363 364 365
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
366

367 368
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
369

370
    """
371 372 373 374 375 376 377 378 379
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
380 381 382 383 384 385
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

386 387 388
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
389 390
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

391 392 393
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
394 395
    l2loss = l2loss * Beta * l2_reg

396 397 398 399 400 401
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
425 426
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
427 428 429 430 431 432 433 434 435 436 437 438 439

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
440
    if in_dygraph_mode():
441 442
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
443 444
        return square_out
    elif _in_legacy_dygraph():
445 446
        minus_out = _legacy_C_ops.elementwise_sub(input, label)
        square_out = _legacy_C_ops.square(minus_out)
447 448
        return square_out

449 450 451 452 453 454
    check_variable_and_dtype(
        input, "input", ['float32', 'float64'], 'square_error_cost'
    )
    check_variable_and_dtype(
        label, "label", ['float32', 'float64'], 'square_error_cost'
    )
455 456
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
457 458 459 460 461
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input], 'Y': [label]},
        outputs={'Out': [minus_out]},
    )
462 463

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
464 465 466
    helper.append_op(
        type='square', inputs={'X': [minus_out]}, outputs={'Out': [square_out]}
    )
467 468 469
    return square_out


470 471 472 473 474 475 476 477
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance

    Returns:
512 513 514
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

553 554 555 556 557 558
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
559 560
        input = erased_input

561 562 563 564 565 566
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
567 568
        label = erased_label

Z
zhiboniu 已提交
569
    if in_dygraph_mode():
570 571 572
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
573

574 575 576 577 578 579 580 581
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
582 583 584 585 586 587
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
588 589 590 591

    return edit_distance_out, sequence_num


592 593 594
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

653 654
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
655
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
656
            print(output)  # [0.65537095]
657 658 659 660 661

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
662 663 664
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
665

J
Jiabin Yang 已提交
666
    if in_dygraph_mode():
667
        out = _C_ops.bce_loss(input, label)
668
        if weight is not None:
669
            out = _C_ops.multiply(out, weight, 'axis', -1)
670 671

        if reduction == 'sum':
672
            return _C_ops.sum(out, [], None, False)
673

674
        elif reduction == 'mean':
675
            return _C_ops.mean_all(out)
676 677 678
        else:
            return out
    else:
J
Jiabin Yang 已提交
679
        if _in_legacy_dygraph():
680
            out = _legacy_C_ops.bce_loss(input, label)
J
Jiabin Yang 已提交
681
            if weight is not None:
682
                out = _legacy_C_ops.elementwise_mul(out, weight, 'axis', -1)
J
Jiabin Yang 已提交
683
            if reduction == 'sum':
684 685 686
                return _legacy_C_ops.reduce_sum(
                    out, 'dim', [0], 'keep_dim', False, "reduce_all", True
                )
J
Jiabin Yang 已提交
687
            elif reduction == 'mean':
688
                return _legacy_C_ops.mean(out)
J
Jiabin Yang 已提交
689 690 691
            else:
                return out
        else:
692 693 694 695 696 697
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'binary_cross_entropy'
            )
            check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'binary_cross_entropy'
            )
J
Jiabin Yang 已提交
698 699 700 701

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
702 703 704 705 706 707 708 709
            helper.append_op(
                type='bce_loss',
                inputs={
                    'X': [input],
                    'Label': [label],
                },
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
710 711 712 713 714 715 716

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
717 718
                        "The weight is not a Tensor, please convert to Tensor."
                    )
J
Jiabin Yang 已提交
719 720 721 722 723 724 725

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
726 727


728 729 730
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
731
    r"""
732 733 734 735 736 737 738 739 740 741 742 743 744
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
745
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
746

747
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
748 749

    .. math::
750
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
751

N
Noel 已提交
752
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
753 754 755
    we reformulate the loss as follows:

    .. math::
756
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
801

802 803
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
804
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
805
            print(output)  # [0.45618808]
806 807 808 809 810 811

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
812 813
            % reduction
        )
814

815
    if in_dygraph_mode():
816 817 818 819 820 821 822 823 824
        one = _C_ops.full(
            [1],
            float(1.0),
            core.VarDesc.VarType.FP32,
            _current_expected_place(),
        )
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
825
        if pos_weight is not None:
826
            log_weight = _C_ops.add(
827 828
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
829
            out = _C_ops.multiply(out, log_weight)
830
        if weight is not None:
831
            out = _C_ops.multiply(out, weight)
832 833

        if reduction == "sum":
834
            return _C_ops.sum(out, [], None, False)
835
        elif reduction == "mean":
836
            return _C_ops.mean_all(out)
H
hong 已提交
837
        else:
838 839 840
            return out
    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
841 842 843 844 845 846 847 848 849 850 851 852 853
        _legacy_C_ops.fill_constant(
            one,
            'value',
            float(1.0),
            'force_cpu',
            False,
            'dtype',
            one.dtype,
            'str_value',
            '1.0',
            'shape',
            [1],
        )
854
        out = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
855
        if pos_weight is not None:
856 857
            log_weight = _legacy_C_ops.elementwise_add(
                _legacy_C_ops.elementwise_mul(
858 859 860 861
                    label, _legacy_C_ops.elementwise_sub(pos_weight, one)
                ),
                one,
            )
862
            out = _legacy_C_ops.elementwise_mul(out, log_weight)
863
        if weight is not None:
864
            out = _legacy_C_ops.elementwise_mul(out, weight)
865 866

        if reduction == "sum":
867
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
868
        elif reduction == "mean":
869
            return _legacy_C_ops.mean(out)
870 871 872
        else:
            return out

873 874 875 876 877 878 879 880 881 882 883 884
    check_variable_and_dtype(
        logit,
        'logit',
        ['float32', 'float64'],
        'binary_cross_entropy_with_logits',
    )
    check_variable_and_dtype(
        label,
        'label',
        ['float32', 'float64'],
        'binary_cross_entropy_with_logits',
    )
885 886 887 888
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

889
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
890 891
        logit, label, name=sigmoid_name
    )
892

Z
zhiboniu 已提交
893
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
894
    if pos_weight is not None:
895 896 897 898 899 900
        check_variable_and_dtype(
            pos_weight,
            'pos_weight',
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
901
        log_weight = paddle.add(
902 903 904 905 906
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one
        )
        pos_weight_name = (
            name if reduction == 'none' and weight is None else None
        )
907 908 909
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
910 911 912 913 914 915
        check_variable_and_dtype(
            weight,
            'weight',
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
916 917 918 919 920 921 922 923 924 925
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


926 927 928 929 930 931 932 933 934 935 936
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
937 938 939
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
940

941 942 943
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
944 945

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
946 947
    represents the number of classes or the size of word dict.

948 949 950 951
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
998 999 1000 1001 1002
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
1003 1004 1005
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
1006 1007 1008 1009
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
1010 1011

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
1012 1013 1014 1015
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
1016
    """
1017
    if in_dygraph_mode():
1018
        out, _, _ = _C_ops.hsigmoid_loss(
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
            input,
            weight,
            label,
            path_table,
            path_code,
            bias,
            num_classes,
            is_sparse,
            0,
            [],
            [],
            [],
            is_sparse,
        )
1033 1034 1035
        return out
    elif _in_legacy_dygraph():
        out, _, _ = _legacy_C_ops.hierarchical_sigmoid(
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            input,
            weight,
            label,
            path_table,
            path_code,
            bias,
            'num_classes',
            num_classes,
            'is_sparse',
            is_sparse,
            'remote_prefetch',
            is_sparse,
        )
1049 1050
        return out

1051 1052 1053
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
    )
1054
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
1055 1056 1057
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
    )
1058
    if bias is not None:
1059 1060 1061
        check_variable_and_dtype(
            bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
        )
1062
    if path_table is not None:
1063 1064 1065
        check_variable_and_dtype(
            path_table, 'path_table', ['int64'], 'hsigmoid_loss'
        )
1066
    if path_code is not None:
1067 1068 1069
        check_variable_and_dtype(
            path_code, 'path_code', ['int64'], 'hsigmoid_loss'
        )
1070 1071 1072 1073

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
1074
        "remote_prefetch": is_sparse,
1075 1076 1077 1078 1079 1080 1081 1082
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
1083
        "Label": label,
1084 1085 1086 1087 1088 1089 1090
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

1091 1092 1093
    helper.append_op(
        type="hierarchical_sigmoid", inputs=inputs, outputs=outputs, attrs=attrs
    )
1094 1095 1096
    return out


1097
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1098
    r"""
1099
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1100 1101 1102 1103 1104 1105
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1106
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1107 1108


1109
    where :math:`z_i` is given by:
1110 1111 1112

    .. math::

1113
        \mathop{z_i} = \left\{\begin{array}{rcl}
1114 1115 1116
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1130
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1131 1132 1133
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1134
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1135 1136

    Returns:
1137
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1138 1139 1140 1141 1142 1143

    Examples:
        .. code-block:: python

            import paddle

1144 1145
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1146
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1147
            print(output)
1148
            # [0.068004]
1149
    """
1150 1151 1152 1153 1154 1155
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss'
    )
1156

1157
    if in_dygraph_mode():
1158
        out, residual = _C_ops.huber_loss(input, label, delta)
1159 1160 1161
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1162 1163
            dtype=helper.input_dtype()
        )
1164
        out = helper.create_variable_for_type_inference(
1165 1166 1167 1168 1169 1170 1171 1172
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1173 1174 1175 1176

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1177 1178
            " 'none', but received %s, which is not allowed." % reduction
        )
1179 1180 1181
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1182
        return paddle.mean(out)
1183
    elif reduction == 'sum':
1184
        return paddle.sum(out)
1185 1186


1187 1188 1189
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1190
    r"""
1191

1192
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1193

1194
    .. math::
1195
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1212
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1213 1214 1215 1216
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1217
    Returns:
1218
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1219 1220 1221 1222 1223

    Examples:

        .. code-block:: python

1224 1225
            import paddle

Z
Zhong Hui 已提交
1226 1227 1228
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1229
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1230
            print(loss) # [0.75]
1231
    """
1232 1233 1234
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1235 1236
            "received %s, which is not allowed." % reduction
        )
1237
    if in_dygraph_mode():
1238 1239
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1240 1241
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1242 1243
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1244
        if reduction == 'sum':
1245
            return _C_ops.sum(out, [], None, False)
1246
        elif reduction == 'mean':
1247
            return _C_ops.mean_all(out)
1248 1249
        return out
    elif _in_legacy_dygraph():
1250 1251
        out = _legacy_C_ops.elementwise_sub(other, input)
        out = _legacy_C_ops.elementwise_mul(out, label)
1252 1253
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1254 1255
            out = _legacy_C_ops.elementwise_add(out, margin)
        out = _legacy_C_ops.relu(out)
1256
        if reduction == 'sum':
1257
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
1258
        elif reduction == 'mean':
1259
            return _legacy_C_ops.mean(out)
1260 1261 1262
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
1263 1264 1265 1266 1267 1268 1269 1270 1271
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss'
    )
    check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'margin_rank_loss'
    )
1272

1273 1274 1275
    out = paddle.subtract(input, other)
    neg_label = paddle.neg(label)
    out = paddle.multiply(neg_label, out)
1276 1277 1278

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1279
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1280 1281 1282 1283 1284
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
1285 1286 1287
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out}
        )
1288 1289 1290 1291
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
1292 1293 1294 1295 1296 1297
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs,
        )
1298 1299 1300
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
1301 1302 1303 1304 1305 1306
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={},
        )
1307 1308 1309
        return result_out


1310
def l1_loss(input, label, reduction='mean', name=None):
1311
    r"""
1312
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1313

1314
    If `reduction` set to ``'none'``, the loss is:
1315 1316

    .. math::
1317
        Out = \lvert input - label \rvert
1318

1319
    If `reduction` set to ``'mean'``, the loss is:
1320 1321

    .. math::
1322
        Out = MEAN(\lvert input - label \rvert)
1323

1324
    If `reduction` set to ``'sum'``, the loss is:
1325 1326

    .. math::
1327
        Out = SUM(\lvert input - label \rvert)
1328

1329

1330
    Parameters:
N
Noel 已提交
1331 1332
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1333
        reduction (str, optional): Indicate the reduction to apply to the loss,
1334
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1335 1336 1337
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1338 1339
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1340

1341
    Returns:
1342
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1343 1344
        If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1345

1346 1347
    Examples:
        .. code-block:: python
N
Noel 已提交
1348

1349
            import paddle
1350

1351 1352
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1353

1354
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1355
            print(l1_loss.numpy())
1356 1357
            # [0.35]

1358
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1359
            print(l1_loss.numpy())
1360 1361 1362
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

1363
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1364
            print(l1_loss.numpy())
1365 1366 1367 1368 1369
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1370 1371
            "received %s, which is not allowed." % reduction
        )
1372

1373
    if in_dygraph_mode():
1374 1375
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1376
        if reduction == 'mean':
1377
            return _C_ops.mean_all(unreduced)
1378
        elif reduction == 'sum':
1379
            return _C_ops.sum(unreduced, [], None, False)
1380 1381
        else:
            return unreduced
1382
    elif _in_legacy_dygraph():
1383 1384 1385
        unreduced = _elementwise_op_in_dygraph(
            input, label, axis=-1, act='abs', op_name='elementwise_sub'
        )
1386
        if reduction == 'mean':
1387
            return _legacy_C_ops.mean(unreduced)
1388
        elif reduction == 'sum':
1389 1390 1391
            return _legacy_C_ops.reduce_sum(
                unreduced, 'dim', [0], 'keep_dim', False, 'reduce_all', True
            )
1392 1393 1394
        else:
            return unreduced

1395 1396 1397 1398 1399 1400
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
    )
1401 1402

    if reduction == 'sum':
1403
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1404 1405
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1406
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1407 1408
        return paddle.mean(unreduced, name=name)
    else:
1409 1410 1411 1412 1413 1414 1415 1416
        return paddle.fluid.layers.elementwise_sub(
            input, label, act='abs', name=name
        )


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1431 1432
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1447

1448 1449 1450 1451
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1452 1453 1454 1455 1456
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1457
                log_out = log_softmax(input)
1458
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1459
                result = nll_loss(log_out, label)
1460
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1461 1462 1463 1464
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1465 1466
            "'none', but received %s, which is not allowed." % reduction
        )
1467 1468 1469 1470

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1471
        raise ValueError(
1472 1473
            'Expected 2 or more dimensions (got {})'.format(input_dims)
        )
1474 1475
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1476 1477
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1478 1479
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1480
            out_shape = [n] + input_shape[2:]
1481 1482 1483
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1484
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1485
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1486
        return out
1487
    elif _in_legacy_dygraph():
1488
        if input_dims != 2 and input_dims != 4:
1489 1490 1491
            input, _ = _legacy_C_ops.reshape2(
                input, None, 'shape', [n, c, 1, -1]
            )
1492
            label, _ = _legacy_C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1493
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503
        out, total_weight = _legacy_C_ops.nll_loss(
            input,
            label,
            weight,
            'ignore_index',
            ignore_index,
            'reduction',
            reduction,
        )
1504
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1505
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', out_shape)
1506 1507 1508 1509 1510 1511 1512 1513 1514
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1515 1516
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

1527 1528 1529
    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
    )
1530 1531 1532 1533
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1534 1535


1536
def kl_div(input, label, reduction='mean', name=None):
1537
    r"""
1538
    Calculate the Kullback-Leibler divergence loss
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
1549
    the same shape as input, loss in each point is calculated
1550
    separately and no reduction is applied.
1551

1552 1553
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
1554

1555 1556
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
1557 1558

    While :attr:`reduction` is :attr:`batchmean`, output loss is
1559 1560 1561 1562
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
1563
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1564 1565 1566 1567 1568 1569 1570 1571 1572
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
1573
        name(str, optional): Name for the operation (optional, default is None). For more information,
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1584

1585
            shape = (5, 20)
1586 1587
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1588

L
LielinJiang 已提交
1589
            # 'batchmean' reduction, loss shape will be [1]
1590
            pred_loss = F.kl_div(x, target, reduction='batchmean')
L
LielinJiang 已提交
1591
            # shape=[1]
1592

1593
            # 'mean' reduction, loss shape will be [1]
1594
            pred_loss = F.kl_div(x, target, reduction='mean')
1595 1596 1597
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1598
            pred_loss = F.kl_div(x, target, reduction='sum')
1599 1600 1601
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1602
            pred_loss = F.kl_div(x, target, reduction='none')
1603 1604 1605
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1606
    # ugly type promotion
1607 1608 1609 1610
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1611
        input = paddle.cast(input, 'float64')
1612 1613 1614 1615
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1616
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1617

1618
    if in_dygraph_mode():
1619
        out = _C_ops.kldiv_loss(input, label, 'none')
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
    elif _in_legacy_dygraph():
1630
        out = _legacy_C_ops.kldiv_loss(input, label, 'reduction', 'none')
1631 1632 1633 1634 1635 1636 1637 1638
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1639 1640 1641 1642
        return out

    helper = LayerHelper('kl_div', **locals())

1643 1644
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1645 1646 1647
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
1648 1649 1650 1651 1652 1653
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input, 'Target': label},
        outputs={'Loss': loss},
        attrs={'reduction': 'none'},
    )
1654 1655 1656 1657 1658 1659 1660 1661

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1662 1663 1664
    return loss


1665
def mse_loss(input, label, reduction='mean', name=None):
1666
    r"""
1667
    Accept input predications and label and returns the mean square error.
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1697
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1698

1699 1700 1701
    Examples:

        .. code-block:: python
1702

1703 1704
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1705 1706
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1707
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1708
            print(output)
1709 1710 1711 1712 1713 1714 1715
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1716 1717
            "but received {}.".format(reduction)
        )
1718

Z
zhiboniu 已提交
1719
    if not in_dynamic_mode():
1720 1721 1722 1723 1724 1725
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1726 1727

    if reduction == 'none':
1728
        return paddle.square(paddle.subtract(input, label), name=name)
1729
    elif reduction == 'mean':
1730 1731 1732
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1733
    else:
1734 1735 1736
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1737 1738


1739 1740 1741 1742 1743 1744 1745 1746 1747
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1748 1749
    """

1750 1751 1752
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1753 1754 1755
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1756
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1757 1758 1759 1760 1761
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1762
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1763

1764 1765
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1784
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1797 1798 1799 1800 1801 1802
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1803

1804 1805 1806 1807
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1808
                reduction='none')
1809 1810 1811
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1812

1813 1814 1815 1816 1817
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1818 1819 1820
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1821 1822 1823

    """

1824 1825 1826
    loss_out = fluid.layers.warpctc(
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1827

Z
zhiboniu 已提交
1828
    loss_out = paddle.squeeze(loss_out, [-1])
1829 1830
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1831
        loss_out = paddle.mean(loss_out / label_lengths)
1832 1833 1834 1835 1836
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
1848
    r"""
1849 1850
    .. math::

1851
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1852

1853
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1854 1855 1856 1857
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1858 1859 1860 1861
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1862 1863

    Args:
G
Guoxia Wang 已提交
1864
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1865
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1866 1867 1868 1869 1870
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1871
        group (Group, optional): The group instance return by paddle.distributed.new_group
1872 1873
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1874 1875 1876 1877 1878 1879 1880 1881
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
1882 1883 1884 1885 1886 1887
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
            the shape is ``[1]``.
1888 1889 1890 1891

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1892
        :name: code-example1
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1941
        :name: code-example2
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

1988
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2032
    if not (group is False or group is None or hasattr(group, 'is_member')):
2033 2034
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2035 2036 2037 2038
             (got group: {})'.format(
                group
            )
        )
2039 2040 2041
        return

    if hasattr(group, 'is_member') and not group.is_member():
2042 2043
        return

2044
    ring_id = 0
2045 2046
    rank = 0
    nranks = 1
2047
    if group is not False:
2048 2049 2050 2051
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2052 2053 2054 2055 2056
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2057
            nranks = parallel_env.world_size if group is None else group.nranks
2058 2059 2060 2061 2062

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2063
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2064 2065 2066 2067
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
2068 2069 2070
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2071
    if in_dygraph_mode():
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2084 2085 2086 2087 2088 2089 2090 2091
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
2092
    elif _in_legacy_dygraph():
2093
        softmax, loss = _legacy_C_ops.margin_cross_entropy(
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
            logits,
            label,
            'ring_id',
            ring_id,
            'rank',
            rank,
            'nranks',
            nranks,
            'margin1',
            margin1,
            'margin2',
            margin2,
            'margin3',
            margin3,
            'scale',
            scale,
            'return_softmax',
            return_softmax,
        )
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
    check_variable_and_dtype(
        logits,
        'logits',
        ['float16', 'float32', 'float64'],
        'margin_cross_entropy',
    )
    check_variable_and_dtype(
        label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
    )

    helper.append_op(
        type=op_type,
        inputs={'Logits': logits, 'Label': label},
        outputs={'Softmax': softmax, 'Loss': loss},
        attrs={
            'return_softmax': return_softmax,
            'ring_id': ring_id,
            'rank': rank,
            'nranks': nranks,
            'margin1': margin1,
            'margin2': margin2,
            'margin3': margin3,
            'scale': scale,
        },
    )
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


2164 2165 2166 2167
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2182
    r"""
2183 2184
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2185 2186 2187 2188 2189 2190
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2191 2192 2193
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2220 2221 2222
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2223 2224 2225 2226 2227
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2228
                                      if :attr:`soft_label` is set to :attr:`False`.
2229 2230 2231
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2232 2233 2234
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2235 2236 2237 2238 2239
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2240
        axis (int, optional): The index of dimension to perform softmax calculations. It
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2256 2257 2258 2259 2260

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2261
            print(out)
2262 2263
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2264
    """
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2287
    r"""
2288 2289 2290
    By default, this operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2291

2292
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
2293

2294 2295
    By default, this operator will calculate the mean of the result, and you can also affect
    the default behavior by using the reduction parameter. Please refer to the part of
2296
    parameters for details.
2297

2298
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
2299
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2300
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2301

2302
    The calculation of this operator includes the following two steps.
2303

2304
    - **1.softmax cross entropy**
2305

2306
        1. Hard label (each sample can only be assigned into one category)
2307

2308
        1.1. when use_softmax=True
2309

2310 2311
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2354
                \\loss_j=loss_j*weight[label_j]
2355

2356

2357 2358 2359 2360 2361 2362 2363
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2364
            2.1 if the ``reduction`` parameter is ``none``
2365 2366 2367

                Return the previous result directly

2368
            2.2 if the ``reduction`` parameter is ``sum``
2369 2370 2371 2372 2373 2374

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2375 2376
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2377

2378
            2.3.1. If the  ``weight``  parameter is ``None``
2379 2380 2381

                   Return the average value of the previous results

2382
            .. math::
2383 2384 2385 2386 2387 2388 2389 2390
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2391
            .. math::
2392
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2393 2394 2395

            2. Soft labels (soft_label = True)

2396
            .. math::
2397
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2398 2399


2400
    Parameters:
2401 2402 2403 2404

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
2405
        :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` .
2406

2407
            Note:
2408

2409
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
2410 2411 2412
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
2413

2414 2415 2416 2417 2418 2419
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2420
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2421 2422 2423 2424
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

2425 2426
            a manual rescaling weight given to each class.
            If given, has to be a Tensor of size C and the data type is float32, float64.
2427 2428 2429 2430 2431
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
2432 2433
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2434 2435 2436 2437 2438
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
2439 2440
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2441
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2442 2443
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2444

2445 2446
        - **soft_label** (bool, optional)

2447
            Indicate whether label is soft.
2448 2449 2450 2451
            Default is ``False``.

        - **axis** (int, optional)

2452 2453 2454
            The index of dimension to perform softmax calculations.
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2455 2456 2457 2458 2459 2460 2461
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
2462
        - **name** (str, optional)
2463 2464 2465

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
2466 2467 2468

    Returns:

2469 2470
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2471

2472
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2473

2474
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2475

2476
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2477

2478
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2479 2480


2481
    Examples:
2482 2483

        .. code-block:: python
2484 2485

            # hard labels
2486 2487 2488 2489 2490
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2491
            input =  paddle.rand([N, C], dtype='float64')
2492
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2493 2494
            weight = paddle.rand([C], dtype='float64')

2495 2496 2497 2498 2499 2500 2501 2502
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]

        .. code-block:: python
2503 2504

            # soft labels
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2518 2519 2520
                                                                  logits,
                                                                  labels,
                                                                  soft_label=True,
2521 2522 2523 2524
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
2525

2526 2527 2528 2529
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2530 2531
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2532 2533
            % reduction
        )
2534
    if ignore_index > 0 and soft_label:
2535 2536
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2537 2538 2539
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2540

2541
    input_dims = len(list(input.shape))
2542 2543 2544
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2545 2546
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2547
        raise ValueError(
2548
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
2549 2550 2551 2552
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
2553 2554
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2555

2556
    if in_dygraph_mode():
2557
        if not soft_label:
2558 2559 2560
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
F
fwenguang 已提交
2561
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2562
            if not soft_label:
2563
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2577
            else:
2578
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2592
        else:
2593 2594 2595
            _, out = _C_ops.cross_entropy_with_softmax(
                input, label, soft_label, use_softmax, True, ignore_index, axis
            )
2596 2597 2598 2599

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2600
            if soft_label:
2601 2602 2603 2604
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2605 2606 2607 2608 2609 2610
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2611 2612 2613 2614
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2615
                out = _C_ops.multiply(out, weight_gather_reshape)
2616 2617 2618 2619 2620
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2633
                    # TODO: Temporarily use squeeze instead of squeeze_
2634 2635 2636
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2637
                if axis != -1 and axis != valid_label.ndim - 1:
2638 2639 2640 2641 2642 2643 2644 2645 2646
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2647
                    weight_gather = _C_ops.gather_nd(
2648 2649
                        weight, valid_label.transpose(temp_perm)
                    )
2650
                else:
2651
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2652 2653 2654
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2655
                input_shape = list(label.shape)
2656 2657 2658
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2659
                out = paddle.cast(out, weight_gather_reshape.dtype)
2660
                out = _C_ops.multiply(out, weight_gather_reshape)
2661 2662 2663 2664 2665

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2666
            return _C_ops.sum(out, [], None, False)
2667 2668 2669 2670 2671 2672 2673 2674
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
            if ignore_index >= 0:
2675
                out_sum = _C_ops.sum(out, [], None, False)
2676 2677 2678
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
2679
                mask = label != ignore_index
2680 2681
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2682
                    count = _C_ops.sum(mask, [], None, False)
2683 2684 2685
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2686 2687 2688
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2689
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2690 2691 2692
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2693
                out_sum = _C_ops.sum(out, [], None, False)
2694 2695 2696
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2697 2698
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2699
                return _C_ops.mean_all(out)
2700 2701 2702 2703 2704 2705 2706

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

    elif _in_legacy_dygraph():
2707
        if not soft_label:
2708 2709 2710
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2711 2712 2713
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
2714 2715 2716
                raise ValueError(
                    "Target {} is out of lower bound.".format(label_min.item())
                )
2717
            if label_max >= input.shape[axis]:
2718 2719 2720
                raise ValueError(
                    "Target {} is out of upper bound.".format(label_max.item())
                )
2721
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2722
            if not soft_label:
2723
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2737
            else:
2738
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2752
        else:
2753
            _, out = _legacy_C_ops.softmax_with_cross_entropy(
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
                input,
                label,
                'soft_label',
                soft_label,
                'ignore_index',
                ignore_index,
                'numeric_stable_mode',
                True,
                'axis',
                axis,
                'use_softmax',
                use_softmax,
            )
2767

2768
        if weight is not None:
2769

H
HydrogenSulfate 已提交
2770
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2771
            if soft_label:
2772
                # chajchaj:
H
HydrogenSulfate 已提交
2773
                # weight's shape is C, where C is class num.
2774 2775
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2776 2777 2778 2779 2780 2781
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2782 2783 2784 2785
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2786
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2787 2788

            else:
2789 2790 2791 2792
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
H
HydrogenSulfate 已提交
2805
                    # TODO: Temporarily use squeeze instead of squeeze_
2806 2807 2808
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2809
                if axis != -1 and axis != valid_label.ndim - 1:
2810 2811 2812 2813 2814 2815 2816 2817 2818
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2819
                    weight_gather = _legacy_C_ops.gather_nd(
2820 2821
                        weight, valid_label.transpose(temp_perm)
                    )
2822
                else:
2823 2824
                    weight_gather = _legacy_C_ops.gather_nd(weight, valid_label)
                weight_gather = _legacy_C_ops.elementwise_mul(
2825 2826
                    weight_gather, ignore_weight_mask
                )
2827
                input_shape = list(label.shape)
2828 2829 2830
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2831
                out = paddle.cast(out, weight_gather_reshape.dtype)
2832
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2833

2834
        if reduction == "sum":
H
HydrogenSulfate 已提交
2835
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2836 2837
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2838
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
2839
        elif reduction == "mean":
H
HydrogenSulfate 已提交
2840 2841 2842 2843 2844 2845
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
2846
            if ignore_index >= 0:
2847
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
2848 2849 2850
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
2851
                mask = label != ignore_index
2852
                if weight is None:
2853
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2854
                    count = _legacy_C_ops.reduce_sum(mask, 'reduce_all', True)
2855
                    ret = out_sum / (count + (count == 0.0))
2856 2857
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2858
                    weight_ignored = _legacy_C_ops.elementwise_mul(
2859 2860
                        mask, weight_gather_reshape
                    )
2861
                    weight_sum = _legacy_C_ops.reduce_sum(
2862 2863
                        weight_ignored, 'reduce_all', True
                    )
2864
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2865 2866
                return ret
            elif weight is not None:
2867
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
2868 2869 2870
                total_weight = _legacy_C_ops.reduce_sum(
                    weight_gather_reshape, 'reduce_all', True
                )
2871
                return out_sum / (total_weight + (total_weight == 0.0))
2872
            else:
2873
                return _legacy_C_ops.mean(out)
2874
        else:
2875 2876
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
2877
            return out
2878

2879
    check_variable_and_dtype(
2880 2881 2882 2883 2884 2885 2886 2887
        input,
        'input',
        ['float16', 'float32', 'float64'],
        'softmax_cross_entropy',
    )
    check_variable_and_dtype(
        label,
        'label',
2888
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
2889 2890
        'softmax_cross_entropy',
    )
2891 2892 2893 2894 2895
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
2896
        'use_softmax': use_softmax,
2897 2898 2899 2900
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
2901 2902 2903 2904 2905

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
2906 2907 2908 2909 2910 2911
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': input, 'Label': label},
        outputs=outputs,
        attrs=attrs,
    )
2912

2913
    if weight is not None:
2914 2915 2916
        check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'], 'softmax_cross_entropy'
        )
2917
        weight_name = name if reduction == 'none' else None
2918
        if soft_label:
2919
            # chajchaj:
H
HydrogenSulfate 已提交
2920
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2921 2922 2923
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2924 2925 2926 2927 2928 2929
            weight_gather = paddle.matmul(
                x=paddle.cast(label, weight.dtype),
                y=weight,
                transpose_x=False,
                transpose_y=True,
            )
2930 2931 2932 2933 2934

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
2935
            if input.shape[axis] != weight.shape[-1]:
2936 2937 2938 2939 2940 2941 2942
                raise ValueError(
                    "input's class_dimension({}) must equal to "
                    "weight's class_dimension({}) "
                    "when weight is provided".format(
                        input.shape[axis], weight.shape[-1]
                    )
                )
H
HydrogenSulfate 已提交
2943

H
HydrogenSulfate 已提交
2944
            valid_label = paddle.multiply(
2945 2946 2947 2948 2949 2950 2951 2952 2953
                paddle.cast(label != ignore_index, dtype=label.dtype), label
            )
            ignore_weight_mask = paddle.cast(
                (label != ignore_index), input.dtype
            )
            if (
                ignore_weight_mask.ndim > 1
                and ignore_weight_mask.shape[axis] == 1
            ):
2954
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
2955
            if axis != -1 and axis != valid_label.ndim - 1:
2956 2957 2958 2959 2960 2961 2962
                temp_perm = (
                    list(range(axis % valid_label.ndim))
                    + list(
                        range((axis % valid_label.ndim + 1), valid_label.ndim)
                    )
                    + [axis % valid_label.ndim]
                )
2963
                weight_gather = paddle.gather_nd(
2964 2965
                    weight, paddle.transpose(valid_label, temp_perm)
                )
2966 2967
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2968 2969
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

2970 2971
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
2972
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2973

2974 2975 2976
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
2977
        if ignore_index >= 0:
2978
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2979 2980 2981
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
2982 2983
            mask = label != ignore_index
            if weight is None:
2984 2985
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
2986
                ret = out_sum / (count + (count == 0.0))
2987 2988 2989 2990
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
2991
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
2992 2993
            return ret
        elif weight is not None:
2994 2995
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
2996
            return out_sum / (total_weight + (total_weight == 0.0))
2997 2998
        else:
            return paddle.mean(out, name=name)
2999

3000
    else:
3001 3002 3003
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

3004
        return out
3005 3006


3007 3008 3009 3010 3011 3012 3013 3014 3015
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
3016
    r"""
3017 3018 3019 3020 3021 3022
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

3023
    This operator measures focal loss function as follows:
3024 3025

    .. math::
3026
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
3027

3028
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
3029 3030 3031 3032 3033

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
3034
           Out = \frac{Out}{normalizer}
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
3052
            For object detection task, it is the number of positive samples.
3053 3054
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
3055
            it should be between 0 and 1.  Default value is set to 0.25.
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
3080
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
3081
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
3082
            print(output)  # [0.65782464]
3083 3084 3085 3086 3087 3088

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
3089 3090
            % reduction
        )
3091 3092

    if normalizer is not None:
3093 3094 3095 3096 3097 3098
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
3099 3100 3101 3102
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
3103 3104 3105 3106
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
                    normalizer_dims
                )
            )
3107

3108 3109
    if in_dygraph_mode():
        place = _current_expected_place()
3110
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
3111

3112 3113 3114
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
3115

3116
        pred = _C_ops.sigmoid(logit)
3117

3118 3119
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
3120 3121 3122 3123
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3124 3125

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3126 3127
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
3128 3129 3130 3131
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3132
        loss = _C_ops.multiply(alpha_t, loss)
3133 3134

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3135 3136
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3137 3138

        if normalizer is not None:
3139
            loss = _C_ops.divide(loss, normalizer)
3140 3141

        if reduction == "sum":
3142
            return _C_ops.sum(loss, [], None, False)
3143
        elif reduction == "mean":
3144
            return _C_ops.mean_all(loss)
3145 3146 3147 3148 3149

        return loss

    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
        _legacy_C_ops.fill_constant(
            one,
            'value',
            float(1.0),
            'force_cpu',
            False,
            'dtype',
            one.dtype,
            'str_value',
            '1.0',
            'shape',
            logit.shape,
        )
3163
        loss = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
3164

3165
        pred = _legacy_C_ops.sigmoid(logit)
3166

3167 3168 3169 3170
        p_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(pred, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, pred),
3171 3172 3173
                _legacy_C_ops.elementwise_sub(one, label),
            ),
        )
3174 3175

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3176 3177 3178 3179
        alpha_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(alpha, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, alpha),
3180 3181 3182
                _legacy_C_ops.elementwise_sub(one, label),
            ),
        )
3183
        loss = _legacy_C_ops.elementwise_mul(alpha_t, loss)
3184 3185

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3186
        gamma_t = _legacy_C_ops.elementwise_pow(
3187 3188
            _legacy_C_ops.elementwise_sub(one, p_t), gamma
        )
3189
        loss = _legacy_C_ops.elementwise_mul(gamma_t, loss)
3190 3191

        if normalizer is not None:
3192
            loss = _legacy_C_ops.elementwise_div(loss, normalizer)
3193 3194

        if reduction == "sum":
3195
            return _legacy_C_ops.reduce_sum(loss, 'reduce_all', True)
3196
        elif reduction == "mean":
3197
            return _legacy_C_ops.mean(loss)
3198 3199 3200

        return loss

3201 3202 3203 3204 3205 3206
    check_variable_and_dtype(
        logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
    )
3207 3208 3209 3210 3211

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
3212 3213
        logit, label, reduction='none', name=bce_name
    )
3214

Z
zhiboniu 已提交
3215
    pred = paddle.nn.functional.sigmoid(logit)
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
3234 3235


3236 3237 3238
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3239
    r"""
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3253

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3268

3269 3270 3271 3272 3273
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3274

3275 3276
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3277

3278 3279
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
            # Tensor([1.54908717])
Y
yangguohao 已提交
3292 3293 3294 3295
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3296 3297
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3298 3299

    if not (input.shape == label.shape):
3300 3301 3302 3303
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3304 3305

    if not _non_static_mode():
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3318

3319 3320 3321 3322
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3323 3324 3325

    if weight is not None:
        if not _non_static_mode():
3326 3327 3328 3329 3330 3331
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3344 3345
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3346
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3421 3422
            "but received {}.".format(reduction)
        )
3423

3424
    if not _non_static_mode():
3425 3426 3427 3428 3429 3430
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3431 3432

    zero_ = paddle.zeros([1], dtype=input.dtype)
3433 3434 3435
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3436 3437 3438 3439 3440 3441 3442

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3443 3444


3445 3446 3447
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
    r"""
    This operator computes the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

     Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3508 3509
            "1D target tensor expected, multi-target not supported"
        )
3510 3511 3512 3513

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3514 3515
            "different sizes"
        )
3516 3517 3518 3519 3520 3521 3522 3523

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3524 3525
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3526
    if label.dtype not in [
3527 3528 3529 3530
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3554 3555


3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3585
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3601

3602 3603
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3604

Y
yangguohao 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3616

Y
yangguohao 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
3640 3641 3642 3643 3644
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3645 3646 3647 3648 3649
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3668 3669

    if not (input.shape == positive.shape == negative.shape):
3670 3671 3672 3673 3674
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3675

3676 3677 3678
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3679
        else paddle.nn.PairwiseDistance(2)
3680
    )
Y
yangguohao 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3692 3693
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3703 3704


3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3792 3793
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3794 3795 3796 3797 3798
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
3799 3800 3801 3802 3803 3804 3805 3806 3807
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3808 3809

    if not (input.shape == positive.shape == negative.shape):
3810 3811 3812 3813 3814
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3832 3833


3834 3835 3836 3837 3838 3839 3840 3841 3842
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3905 3906
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3907 3908

    if not _non_static_mode():
3909 3910 3911 3912 3913 3914
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3915 3916 3917 3918
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3919 3920 3921
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3922 3923 3924 3925
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
        if not _non_static_mode():
3926 3927 3928
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3929 3930 3931
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3932 3933 3934 3935
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3936 3937 3938
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3939 3940 3941 3942 3943
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3944
    else:
3945 3946 3947 3948 3949 3950 3951 3952 3953
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3954 3955 3956 3957 3958 3959 3960 3961 3962

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        input (Tensor): The input predications tensor with shape: [N, *],
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
             Available dtype is float32, float64.

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is [1].

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
4004 4005 4006 4007 4008 4009 4010
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
4011 4012

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
4013 4014 4015 4016 4017 4018 4019
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
4020 4021 4022 4023
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
4024 4025 4026
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
4027 4028 4029

    if not _non_static_mode():
        fluid.data_feeder.check_variable_and_dtype(
4030 4031 4032 4033 4034 4035 4036 4037
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
4038 4039

    if not (input.shape == label.shape):
4040
        raise ValueError("input's shape must equal to " "label's shape")
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out