loss.py 96.0 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
Z
zhiboniu 已提交
24 25 26
from ...fluid.layers import dice_loss  # noqa: F401
from ...fluid.layers import log_loss  # noqa: F401
from ...fluid.layers import npair_loss  # noqa: F401
27
from ...tensor.manipulation import reshape
Z
zhiboniu 已提交
28 29
from ...fluid.layers import softmax_with_cross_entropy as fluid_softmax_with_cross_entropy
from ...fluid.layers import square_error_cost  # noqa: F401
30

Z
zhiboniu 已提交
31
from ...fluid.layers import edit_distance  # noqa: F401
32
from ...fluid.layers import huber_loss
33
from ...fluid.layer_helper import LayerHelper
34
from ...fluid.framework import _varbase_creator
35
from ...static import Variable
36
from paddle.utils import deprecated
W
wanghuancoder 已提交
37
from paddle import _C_ops
Z
zhiboniu 已提交
38
from paddle import in_dynamic_mode
J
Jiabin Yang 已提交
39
from paddle.framework import core
40
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode, _current_expected_place
41 42
__all__ = []

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def binary_cross_entropy(input, label, weight=None, reduction='mean',
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

104 105
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
106
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
107
            print(output)  # [0.65537095]
108 109 110 111 112 113 114 115

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

J
Jiabin Yang 已提交
116 117
    if in_dygraph_mode():
        out = _C_ops.final_state_bce_loss(input, label)
118
        if weight is not None:
119
            out = _C_ops.final_state_multiply(out, weight, 'axis', -1)
120 121

        if reduction == 'sum':
W
wanghuancoder 已提交
122 123
            return _C_ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                     "reduce_all", True)
124
        elif reduction == 'mean':
125
            return _C_ops.final_state_mean_all(out)
126 127 128
        else:
            return out
    else:
J
Jiabin Yang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        if _in_legacy_dygraph():
            out = _C_ops.bce_loss(input, label)
            if weight is not None:
                out = _C_ops.elementwise_mul(out, weight, 'axis', -1)
            if reduction == 'sum':
                return _C_ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                         "reduce_all", True)
            elif reduction == 'mean':
                return _C_ops.mean(out)
            else:
                return out
        else:
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'binary_cross_entropy')
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'binary_cross_entropy')

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
            helper.append_op(
                type='bce_loss',
                inputs={
                    'X': [input],
                    'Label': [label],
                },
                outputs={'Out': [out]})

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
                        "The weight is not a Tensor, please convert to Tensor.")

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
171 172


173 174 175 176 177 178
def binary_cross_entropy_with_logits(logit,
                                     label,
                                     weight=None,
                                     reduction='mean',
                                     pos_weight=None,
                                     name=None):
179
    r"""
180 181 182 183 184 185 186 187 188 189 190 191 192
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
193
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
194

195
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
196 197

    .. math::
198
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
199

N
Noel 已提交
200
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
201 202 203
    we reformulate the loss as follows:

    .. math::
204
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
249

250 251
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
252
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
253
            print(output)  # [0.45618808]
254 255 256 257 258 259 260 261

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

H
hong 已提交
262 263
    if _non_static_mode():
        if in_dygraph_mode():
264 265 266
            one = _C_ops.final_state_full([1],
                                          float(1.0), core.VarDesc.VarType.FP32,
                                          _current_expected_place())
H
hong 已提交
267 268 269
            out = _C_ops.final_state_sigmoid_cross_entropy_with_logits(
                logit, label, False, -100)
        else:
270 271 272 273
            one = _varbase_creator(dtype=logit.dtype)
            _C_ops.fill_constant(one, 'value',
                                 float(1.0), 'force_cpu', False, 'dtype',
                                 one.dtype, 'str_value', '1.0', 'shape', [1])
H
hong 已提交
274
            out = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
275
        if pos_weight is not None:
W
wanghuancoder 已提交
276 277 278 279 280
            log_weight = _C_ops.elementwise_add(
                _C_ops.elementwise_mul(label,
                                       _C_ops.elementwise_sub(pos_weight, one)),
                one)
            out = _C_ops.elementwise_mul(out, log_weight)
281
        if weight is not None:
W
wanghuancoder 已提交
282
            out = _C_ops.elementwise_mul(out, weight)
283 284

        if reduction == "sum":
W
wanghuancoder 已提交
285
            return _C_ops.reduce_sum(out, 'reduce_all', True)
286
        elif reduction == "mean":
W
wanghuancoder 已提交
287
            return _C_ops.mean(out)
288 289 290 291 292 293 294 295 296 297 298 299 300
        else:
            return out

    fluid.data_feeder.check_variable_and_dtype(
        logit, 'logit', ['float32', 'float64'],
        'binary_cross_entropy_with_logits')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'],
        'binary_cross_entropy_with_logits')
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

301
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
302 303
        logit, label, name=sigmoid_name)

Z
zhiboniu 已提交
304
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
305 306 307 308 309
    if pos_weight is not None:
        fluid.data_feeder.check_variable_and_dtype(
            pos_weight, 'pos_weight', ['float32', 'float64'],
            'binary_cross_entropy_with_logits')
        log_weight = paddle.add(
310
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        pos_weight_name = name if reduction == 'none' and weight is None else None
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
        fluid.data_feeder.check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'],
            'binary_cross_entropy_with_logits')
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
def hsigmoid_loss(input,
                  label,
                  num_classes,
                  weight,
                  bias=None,
                  path_table=None,
                  path_code=None,
                  is_sparse=False,
                  name=None):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
395 396 397 398 399
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
400 401 402
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
403 404 405 406
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
407 408

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
409 410 411 412
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
413 414
    """

415
    if _non_static_mode():
W
wanghuancoder 已提交
416
        out, _, _ = _C_ops.hierarchical_sigmoid(
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
            input, weight, label, path_table, path_code, bias, 'num_classes',
            num_classes, 'is_sparse', is_sparse, 'remote_prefetch', is_sparse)
        return out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'hsigmoid_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'hsigmoid_loss')
    if bias is not None:
        check_variable_and_dtype(bias, 'bias', ['float32', 'float64'],
                                 'hsigmoid_loss')
    if path_table is not None:
        check_variable_and_dtype(path_table, 'path_table', ['int64'],
                                 'hsigmoid_loss')
    if path_code is not None:
        check_variable_and_dtype(path_code, 'path_code', ['int64'],
                                 'hsigmoid_loss')

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out


464
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
465
    r"""
466 467 468 469 470 471 472
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

473
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
474 475 476 477 478 479


    where z_i is given by:

    .. math::

480 481
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
482
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
483
        \end{array} \right.
484 485 486 487 488 489 490 491 492 493 494 495 496

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
497
        delta (float, optional): Specifies the hyperparameter delta to be used.
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
519
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
520
            print(output)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    """
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss')

    out = huber_loss(input=input, label=label, delta=delta)

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
536
        return paddle.mean(out)
537
    elif reduction == 'sum':
538
        return paddle.sum(out)
539 540


541 542
def margin_ranking_loss(input,
                        other,
543
                        label,
544 545 546
                        margin=0.0,
                        reduction='mean',
                        name=None):
547
    r"""
548

549
    This op the calcluate the margin rank loss between the input, other and label, use the math function as follows.
550

551
    .. math::
552
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
569
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
570 571 572 573 574 575 576 577 578 579
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Examples:

        .. code-block:: python

580 581
            import paddle

Z
Zhong Hui 已提交
582 583 584
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
585
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
586
            print(loss) # [0.75]
587
    """
588 589 590 591
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
592 593 594 595 596 597 598 599 600 601 602 603 604
    if in_dygraph_mode():
        out = _C_ops.final_state_subtract(other, input)
        out = _C_ops.final_state_multiply(out, label)
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
            out = _C_ops.elementwise_add(out, margin)
        out = _C_ops.relu(out)
        if reduction == 'sum':
            return _C_ops.reduce_sum(out, 'reduce_all', True)
        elif reduction == 'mean':
            return _C_ops.final_state_mean_all(out)
        return out
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
605 606
        out = _C_ops.elementwise_sub(other, input)
        out = _C_ops.elementwise_mul(out, label)
607 608
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
W
wanghuancoder 已提交
609 610
            out = _C_ops.elementwise_add(out, margin)
        out = _C_ops.relu(out)
611
        if reduction == 'sum':
W
wanghuancoder 已提交
612
            return _C_ops.reduce_sum(out, 'reduce_all', True)
613
        elif reduction == 'mean':
W
wanghuancoder 已提交
614
            return _C_ops.mean(out)
615 616 617 618 619 620 621 622
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
623
        label, 'label', ['float32', 'float64'], 'margin_rank_loss')
624

625
    out = paddle.subtract(other, input)
626
    out = paddle.multiply(out, label)
627 628 629

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
630
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out})
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs)
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={})
        return result_out


658
def l1_loss(input, label, reduction='mean', name=None):
659
    r"""
660
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
661

662
    If `reduction` set to ``'none'``, the loss is:
663 664

    .. math::
665
        Out = \lvert input - label \rvert
666

667
    If `reduction` set to ``'mean'``, the loss is:
668 669

    .. math::
670
        Out = MEAN(\lvert input - label \rvert)
671

672
    If `reduction` set to ``'sum'``, the loss is:
673 674

    .. math::
675
        Out = SUM(\lvert input - label \rvert)
676

677

678
    Parameters:
N
Noel 已提交
679 680
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
681
        reduction (str, optional): Indicate the reduction to apply to the loss,
682
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
683 684 685
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
686 687
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
688

689
    Returns:
690 691 692
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
693

694 695
    Examples:
        .. code-block:: python
N
Noel 已提交
696

697
            import paddle
698

699 700
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
701

702
            l1_loss = paddle.nn.functional.l1_loss(input, label)
703
            print(l1_loss.numpy())
704 705
            # [0.35]

706
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
707
            print(l1_loss.numpy())
708 709 710
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

711
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
712
            print(l1_loss.numpy())
713 714 715 716 717 718 719
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

720 721 722 723 724 725 726 727 728 729 730
    if in_dygraph_mode():
        unreduced = _elementwise_op_in_dygraph(
            input, label, axis=-1, act='abs', op_name='elementwise_sub')
        if reduction == 'mean':
            return _C_ops.final_state_mean_all(unreduced)
        elif reduction == 'sum':
            return _C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                     'reduce_all', True)
        else:
            return unreduced
    elif in_dynamic_mode():
731
        unreduced = _elementwise_op_in_dygraph(
732
            input, label, axis=-1, act='abs', op_name='elementwise_sub')
733
        if reduction == 'mean':
W
wanghuancoder 已提交
734
            return _C_ops.mean(unreduced)
735
        elif reduction == 'sum':
W
wanghuancoder 已提交
736 737
            return _C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                     'reduce_all', True)
738 739 740 741
        else:
            return unreduced

    fluid.data_feeder.check_variable_and_dtype(
742
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
743 744 745 746
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

    if reduction == 'sum':
747
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
748 749
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
750
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
751 752
        return paddle.mean(unreduced, name=name)
    else:
753 754
        return paddle.fluid.layers.elementwise_sub(
            input, label, act='abs', name=name)
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
793

794 795 796 797
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

798 799 800 801 802
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
803
                log_out = log_softmax(input)
804
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
805
                result = nll_loss(log_out, label)
806
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
807 808 809 810 811 812 813 814 815 816 817 818 819
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
        raise ValueError('Expected 2 or more dimensions (got {})'.format(
            input_dims))
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
820 821 822 823 824 825 826 827 828 829 830
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
            input, _ = _C_ops.reshape2(input, None, 'shape', [n, c, 1, -1])
            label, _ = _C_ops.reshape2(label, None, 'shape', [n, 1, -1])
            out_shape = [n] + input_shape[2:]
        out, total_weight = _C_ops.final_state_nll_loss(input, label, weight,
                                                        ignore_index, reduction)
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out, _ = _C_ops.reshape2(out, None, 'shape', out_shape)
        return out
    if _in_legacy_dygraph():
831
        if input_dims != 2 and input_dims != 4:
W
wanghuancoder 已提交
832 833
            input, _ = _C_ops.reshape2(input, None, 'shape', [n, c, 1, -1])
            label, _ = _C_ops.reshape2(label, None, 'shape', [n, 1, -1])
834
            out_shape = [n] + input_shape[2:]
H
hong 已提交
835

W
wanghuancoder 已提交
836 837 838
        out, total_weight = _C_ops.nll_loss(input, label, weight,
                                            'ignore_index', ignore_index,
                                            'reduction', reduction)
839
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
W
wanghuancoder 已提交
840
            out, _ = _C_ops.reshape2(out, None, 'shape', out_shape)
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'nll_loss')
    fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                               'nll_loss')
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
870 871


872
def kl_div(input, label, reduction='mean', name=None):
873
    r"""
874 875 876 877 878 879 880 881 882 883 884
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
885
    the same shape as input, loss in each point is calculated
886
    separately and no reduction is applied.
887

888 889
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
890

891 892
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
893 894

    While :attr:`reduction` is :attr:`batchmean`, output loss is
895 896 897 898
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
899
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
900 901 902 903 904 905 906 907 908
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
909
        name(str, optional): Name for the operation (optional, default is None). For more information,
910 911 912 913 914 915 916 917 918 919 920
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
921

922 923 924 925
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
926
            # 'batchmean' reduction, loss shape will be [1]
927 928
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='batchmean')
L
LielinJiang 已提交
929
            # shape=[1]
930

931
            # 'mean' reduction, loss shape will be [1]
932 933
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='mean')
934 935 936
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
937 938
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='sum')
939 940 941
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
942 943
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='none')
944 945 946
            # shape=[5, 20]

    """
L
LielinJiang 已提交
947 948 949 950
    # ugly type promotion
    if fluid.data_feeder.convert_dtype(
            input.dtype) == 'float32' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float64':
951
        input = paddle.cast(input, 'float64')
L
LielinJiang 已提交
952 953 954
    elif fluid.data_feeder.convert_dtype(
            input.dtype) == 'float64' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float32':
955
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
956

957 958 959 960 961
    if _non_static_mode():
        if _in_legacy_dygraph():
            out = _C_ops.kldiv_loss(input, label, 'reduction', 'none')
        else:
            out = _C_ops.final_state_kldiv_loss(input, label, 'none')
962 963 964 965 966 967 968 969
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
        return out

    helper = LayerHelper('kl_div', **locals())

    fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input,
                'Target': label},
        outputs={'Loss': loss},
986 987 988 989 990 991 992 993 994
        attrs={'reduction': 'none'})

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
995 996 997
    return loss


998
def mse_loss(input, label, reduction='mean', name=None):
999
    r"""
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    This op accepts input predications and label and returns the mean square error.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        Tensor: The tensor tensor storing the mean square error difference of input and label.

    Return type: Tensor.
1033

1034 1035 1036
    Examples:

        .. code-block:: python
1037

1038 1039
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1040 1041
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1042
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1043
            print(output)
1044 1045 1046 1047 1048 1049 1050 1051 1052
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
1053
    if not in_dynamic_mode():
1054 1055 1056 1057 1058 1059
        paddle.fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss')
        paddle.fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss')

    if reduction == 'none':
1060
        return paddle.square(paddle.subtract(input, label), name=name)
1061 1062
    elif reduction == 'mean':
        return paddle.mean(
1063
            paddle.square(paddle.subtract(input, label)), name=name)
1064
    else:
1065
        return paddle.sum(paddle.square(paddle.subtract(input, label)),
1066
                          name=name)
1067 1068


1069 1070 1071 1072 1073
def ctc_loss(log_probs,
             labels,
             input_lengths,
             label_lengths,
             blank=0,
1074
             reduction='mean',
H
Hui Zhang 已提交
1075
             norm_by_times=False):
1076 1077
    """

1078 1079 1080
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1081 1082 1083
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1084
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1085 1086 1087 1088 1089
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1090
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1091

1092 1093
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1133 1134 1135 1136
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1137

1138 1139 1140 1141
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1142
                reduction='none')
1143
            print(loss)  #[3.9179852 2.9076521]
1144

1145 1146 1147 1148 1149
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1150
            print(loss)  #[1.1376063]
1151 1152 1153

    """

1154
    loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
H
Hui Zhang 已提交
1155
                                    input_lengths, label_lengths)
1156

Z
zhiboniu 已提交
1157
    loss_out = paddle.squeeze(loss_out, [-1])
1158 1159
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1160
        loss_out = paddle.mean(loss_out / label_lengths)
1161 1162 1163 1164 1165
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1166 1167 1168 1169 1170 1171 1172 1173 1174
def margin_cross_entropy(logits,
                         label,
                         margin1=1.0,
                         margin2=0.5,
                         margin3=0.0,
                         scale=64.0,
                         group=None,
                         return_softmax=False,
                         reduction='mean'):
1175
    r"""
1176 1177
    .. math::

1178
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1179

1180
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1181 1182 1183 1184
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1185 1186 1187 1188 1189 1190
        The API supports single GPU and multi GPU, and don't supports CPU.

        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1191 1192

    Args:
G
Guoxia Wang 已提交
1193
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1194
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1195 1196 1197 1198 1199
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1200 1201 1202
        group (Group, optional): The group instance return by paddle.distributed.new_group 
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
            `return_softmax` is False, otherwise the tuple \
            (loss, softmax), softmax is shard_softmax when \
            using model parallel, otherwise softmax is in \
            the same shape with input logits. If ``reduction == None``, \
            the shape of loss is ``[N, 1]``, otherwise the shape is ``[1]``.

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1221
        :name: code-example1
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
        
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1270
        :name: code-example2
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py 
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
1361 1362 1363 1364 1365 1366 1367
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1368 1369
        return

1370
    ring_id = 0
1371 1372
    rank = 0
    nranks = 1
1373 1374 1375 1376 1377 1378 1379 1380
    if group != False:
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1381 1382 1383 1384 1385

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
1386
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
1387 1388 1389 1390
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

Z
zhiboniu 已提交
1391
    if in_dynamic_mode():
1392
        softmax, loss = _C_ops.margin_cross_entropy(
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks,
            'margin1', margin1, 'margin2', margin2, 'margin3', margin3, 'scale',
            scale, 'return_softmax', return_softmax)
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    check_variable_and_dtype(logits, 'logits',
                             ['float16', 'float32', 'float64'],
                             'margin_cross_entropy')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'],
                             'margin_cross_entropy')

    helper.append_op(
        type=op_type,
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
            'return_softmax': return_softmax,
            'ring_id': ring_id,
            'rank': rank,
            'nranks': nranks,
            'margin1': margin1,
            'margin2': margin2,
            'margin3': margin3,
            'scale': scale,
        })

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


1444 1445 1446 1447 1448 1449 1450
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'))
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100,
                               numeric_stable_mode=True,
                               return_softmax=False,
                               axis=-1):
    return fluid_softmax_with_cross_entropy(logits, label, soft_label,
                                            ignore_index, numeric_stable_mode,
                                            return_softmax, axis)


1463 1464 1465 1466
def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
1467 1468 1469
                  reduction='mean',
                  soft_label=False,
                  axis=-1,
1470
                  use_softmax=True,
1471
                  name=None):
1472
    r"""
H
HydrogenSulfate 已提交
1473 1474 1475
    By default, this operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable computing. 
1476

1477
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
1478

H
HydrogenSulfate 已提交
1479 1480
    By default, this operator will calculate the mean of the result, and you can also affect 
    the default behavior by using the reduction parameter. Please refer to the part of 
1481
    parameters for details.
1482

1483
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
H
HydrogenSulfate 已提交
1484
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels 
1485
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
1486

1487
    The calculation of this operator includes the following two steps.
1488

1489
    - **1.softmax cross entropy**
1490

1491
        1. Hard label (each sample can only be assigned into one category)
1492

1493
        1.1. when use_softmax=True
1494

1495 1496
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
H
HydrogenSulfate 已提交
1539
                \\loss_j=loss_j*weight[label_j] 
1540

1541

1542 1543 1544 1545 1546 1547 1548
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

H
HydrogenSulfate 已提交
1549
            2.1 if the ``reduction`` parameter is ``none`` 
1550 1551 1552

                Return the previous result directly

H
HydrogenSulfate 已提交
1553
            2.2 if the ``reduction`` parameter is ``sum`` 
1554 1555 1556 1557 1558 1559

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

H
HydrogenSulfate 已提交
1560 1561
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to 
            the ``weight`` parameter as follows. 
1562

H
HydrogenSulfate 已提交
1563
            2.3.1. If the  ``weight``  parameter is ``None`` 
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

                   Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
H
HydrogenSulfate 已提交
1577
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j] 
1578 1579 1580 1581 1582

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
H
HydrogenSulfate 已提交
1583 1584
 
 
1585
    Parameters:
1586 1587 1588 1589

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
H
HydrogenSulfate 已提交
1590
	    :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` . 
1591

H
HydrogenSulfate 已提交
1592
            Note: 
1593

H
HydrogenSulfate 已提交
1594
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the 
1595 1596 1597
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
H
HydrogenSulfate 已提交
1598
 
1599 1600 1601 1602 1603 1604
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

H
HydrogenSulfate 已提交
1605
            2. If soft_label=True, the shape and data type should be same with ``input`` , 
1606 1607 1608 1609
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

H
HydrogenSulfate 已提交
1610 1611
            a manual rescaling weight given to each class. 
            If given, has to be a Tensor of size C and the data type is float32, float64. 
1612 1613 1614 1615 1616
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
H
HydrogenSulfate 已提交
1617 1618
            and does not contribute to the loss. A negative value means that no label 
            value needs to be ignored. Only valid when soft_label = False.  
1619 1620 1621 1622 1623
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
1624 1625
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
1626
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
1627 1628
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1629

1630 1631
        - **soft_label** (bool, optional)

H
HydrogenSulfate 已提交
1632
            Indicate whether label is soft. 
1633 1634 1635 1636
            Default is ``False``.

        - **axis** (int, optional)

H
HydrogenSulfate 已提交
1637 1638 1639
            The index of dimension to perform softmax calculations. 
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the 
            number of dimensions of input :attr:`input`. 
1640 1641 1642 1643 1644 1645 1646
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
1647
        - **name** (str, optional)
1648 1649 1650

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
1651 1652 1653

    Returns:

1654 1655
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
1656

1657
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
1658

1659
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
1660

H
HydrogenSulfate 已提交
1661
        1. If soft_label = False, the dimension of return value is the same with ``label`` . 
C
Chen Long 已提交
1662

H
HydrogenSulfate 已提交
1663
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` . 
1664 1665 1666 1667 1668


     Example1(hard labels):

        .. code-block:: python
H
HydrogenSulfate 已提交
1669
            
1670 1671 1672 1673 1674
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
H
HydrogenSulfate 已提交
1675
            input =  paddle.rand([N, C], dtype='float64')  
1676
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
H
HydrogenSulfate 已提交
1677 1678
            weight = paddle.rand([C], dtype='float64') 
            
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]


    Example2(soft labels):

        .. code-block:: python
H
HydrogenSulfate 已提交
1690
            
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
H
HydrogenSulfate 已提交
1704 1705 1706
                                                                  logits,  
                                                                  labels, 
                                                                  soft_label=True, 
1707 1708 1709 1710
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
1711

1712 1713 1714 1715
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
1716 1717 1718
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)
1719 1720 1721 1722 1723 1724
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
            "should be '-100', but received %s, which is not allowed." %
            ignore_index)

1725
    input_dims = len(list(input.shape))
1726 1727 1728
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

1729 1730
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
1731
        raise ValueError(
1732 1733 1734 1735
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
1736 1737

    if _non_static_mode():
H
HydrogenSulfate 已提交
1738
        if soft_label == False:
H
HydrogenSulfate 已提交
1739 1740
            valid_label = paddle.cast(
                label != ignore_index, dtype=label.dtype) * label
H
HydrogenSulfate 已提交
1741 1742 1743
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
1744 1745
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
H
HydrogenSulfate 已提交
1746
            if label_max >= input.shape[axis]:
1747 1748
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
F
fwenguang 已提交
1749
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
1750 1751 1752 1753 1754
            _, _, out = _C_ops.softmax_with_cross_entropy(
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
        else:
1755 1756 1757 1758 1759 1760 1761 1762 1763
            if in_dygraph_mode():
                _, out = _C_ops.final_state_cross_entropy_with_softmax(
                    input, label, soft_label, use_softmax, True, ignore_index,
                    axis)
            if _in_legacy_dygraph():
                _, out = _C_ops.softmax_with_cross_entropy(
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
1764

1765
        if weight is not None:
1766

H
HydrogenSulfate 已提交
1767
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
1768 1769
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
1770
                # weight's shape is C, where C is class num.
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True)
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

W
wanghuancoder 已提交
1782
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
1783 1784

            else:
1785 1786 1787 1788 1789 1790 1791
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

H
HydrogenSulfate 已提交
1792 1793
                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
H
HydrogenSulfate 已提交
1794
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
1795
                        axis] == 1:
H
HydrogenSulfate 已提交
1796
                    # TODO: Temporarily use squeeze instead of squeeze_
H
HydrogenSulfate 已提交
1797 1798
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
H
HydrogenSulfate 已提交
1799
                if axis != -1 and axis != valid_label.ndim - 1:
1800
                    temp_perm = list(range(axis % valid_label.ndim)) \
1801
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
H
HydrogenSulfate 已提交
1802
                                + [axis % valid_label.ndim]
1803 1804 1805 1806
                    weight_gather = _C_ops.gather_nd(
                        weight, valid_label.transpose(temp_perm))
                else:
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
1807 1808
                weight_gather = _C_ops.elementwise_mul(weight_gather,
                                                       ignore_weight_mask)
1809 1810 1811 1812
                input_shape = list(label.shape)
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
1813
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
1814

1815
        if reduction == "sum":
H
HydrogenSulfate 已提交
1816
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
1817 1818
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
W
wanghuancoder 已提交
1819
            return _C_ops.reduce_sum(out, 'reduce_all', True)
1820
        elif reduction == "mean":
H
HydrogenSulfate 已提交
1821 1822 1823 1824 1825 1826
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
1827
            if ignore_index >= 0:
W
wanghuancoder 已提交
1828
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
1829 1830 1831
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
1832
                mask = (label != ignore_index)
1833
                if weight is None:
1834
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
W
wanghuancoder 已提交
1835
                    count = _C_ops.reduce_sum(mask, 'reduce_all', True)
1836
                    ret = out_sum / (count + (count == 0.0))
1837 1838
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
1839
                    weight_ignored = _C_ops.elementwise_mul(
1840
                        mask, weight_gather_reshape)
W
wanghuancoder 已提交
1841 1842
                    weight_sum = _C_ops.reduce_sum(weight_ignored, 'reduce_all',
                                                   True)
1843
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
1844 1845
                return ret
            elif weight is not None:
W
wanghuancoder 已提交
1846 1847 1848
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
                total_weight = _C_ops.reduce_sum(weight_gather_reshape,
                                                 'reduce_all', True)
1849
                return out_sum / (total_weight + (total_weight == 0.0))
1850
            else:
1851 1852 1853 1854
                if in_dygraph_mode():
                    return _C_ops.final_state_mean_all(out)
                else:
                    return _C_ops.mean(out)
1855

1856
        else:
1857 1858
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
1859
            return out
1860

1861 1862 1863
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'softmax_cross_entropy')
    fluid.data_feeder.check_variable_and_dtype(
1864 1865
        label, 'label',
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
1866
        'softmax_cross_entropy')
1867 1868 1869 1870 1871
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
1872
        'use_softmax': use_softmax
1873 1874 1875 1876
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1877 1878 1879 1880 1881

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
1882 1883 1884 1885
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': input,
                'Label': label},
1886
        outputs=outputs,
1887 1888
        attrs=attrs)

1889
    if weight is not None:
1890 1891 1892
        fluid.data_feeder.check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'], 'softmax_cross_entropy')
        weight_name = name if reduction == 'none' else None
1893 1894
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
1895
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
            weight_gather = paddle.matmul(
                x=paddle.cast(label, weight.dtype),
                y=weight,
                transpose_x=False,
                transpose_y=True)

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
1909 1910
            if input.shape[axis] != weight.shape[-1]:
                raise ValueError("input's class_dimension({}) must equal to "
1911 1912
                                 "weight's class_dimension({}) "
                                 "when weight is provided" \
1913
                                 .format(input.shape[axis], weight.shape[-1]))
H
HydrogenSulfate 已提交
1914

H
HydrogenSulfate 已提交
1915 1916 1917 1918 1919
            valid_label = paddle.multiply(
                paddle.cast(
                    label != ignore_index, dtype=label.dtype), label)
            ignore_weight_mask = paddle.cast((label != ignore_index),
                                             input.dtype)
H
HydrogenSulfate 已提交
1920
            if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
1921 1922
                    axis] == 1:
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
1923
            if axis != -1 and axis != valid_label.ndim - 1:
1924
                temp_perm = list(range(axis % valid_label.ndim)) \
H
HydrogenSulfate 已提交
1925
                            + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
1926 1927 1928 1929 1930
                            + [axis % valid_label.ndim]
                weight_gather = paddle.gather_nd(
                    weight, paddle.transpose(valid_label, temp_perm))
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
1931 1932
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

1933 1934
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
1935
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
1936

1937 1938 1939
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
1940
        if ignore_index >= 0:
1941
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
1942 1943 1944
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
1945 1946 1947 1948
            mask = (label != ignore_index)
            if (weight is None):
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
1949
                ret = out_sum / (count + (count == 0.0))
1950 1951 1952 1953
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
1954
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
1955 1956
            return ret
        elif weight is not None:
1957 1958
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
1959
            return out_sum / (total_weight + (total_weight == 0.0))
1960 1961
        else:
            return paddle.mean(out, name=name)
1962

1963
    else:
1964 1965 1966
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

1967
        return out
1968 1969 1970 1971 1972 1973 1974 1975 1976


def sigmoid_focal_loss(logit,
                       label,
                       normalizer=None,
                       alpha=0.25,
                       gamma=2.0,
                       reduction='sum',
                       name=None):
1977
    r"""
1978 1979 1980 1981 1982 1983
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

H
HydrogenSulfate 已提交
1984
    This operator measures focal loss function as follows: 
1985 1986

    .. math::
1987
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
1988

H
HydrogenSulfate 已提交
1989
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`. 
1990 1991 1992 1993 1994

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
1995
           Out = \frac{Out}{normalizer}
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
2013
            For object detection task, it is the number of positive samples.
2014 2015
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
H
HydrogenSulfate 已提交
2016
            it should be between 0 and 1.  Default value is set to 0.25. 
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2041
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2042
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2043
            print(output)  # [0.65782464]
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

    if normalizer is not None:
        fluid.data_feeder.check_variable_and_dtype(normalizer, 'normalizer',
                                                   ['float32', 'float64'],
                                                   'sigmoid_focal_loss')
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}.".
                format(normalizer_dims))

H
hong 已提交
2063
    if _non_static_mode():
2064
        one = _varbase_creator(dtype=logit.dtype)
W
wanghuancoder 已提交
2065 2066 2067
        _C_ops.fill_constant(one, 'value',
                             float(1.0), 'force_cpu', False, 'dtype', one.dtype,
                             'str_value', '1.0', 'shape', logit.shape)
H
hong 已提交
2068 2069 2070 2071 2072
        if in_dygraph_mode():
            loss = _C_ops.final_state_sigmoid_cross_entropy_with_logits(
                logit, label, False, -100)
        else:
            loss = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
W
wanghuancoder 已提交
2073 2074 2075 2076 2077 2078
        pred = _C_ops.sigmoid(logit)
        p_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(pred, label),
            _C_ops.elementwise_mul(
                _C_ops.elementwise_sub(one, pred),
                _C_ops.elementwise_sub(one, label)))
2079 2080

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
W
wanghuancoder 已提交
2081 2082 2083 2084 2085 2086
        alpha_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(alpha, label),
            _C_ops.elementwise_mul(
                _C_ops.elementwise_sub(one, alpha),
                _C_ops.elementwise_sub(one, label)))
        loss = _C_ops.elementwise_mul(alpha_t, loss)
2087 2088

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
W
wanghuancoder 已提交
2089 2090 2091
        gamma_t = _C_ops.elementwise_pow(
            _C_ops.elementwise_sub(one, p_t), gamma)
        loss = _C_ops.elementwise_mul(gamma_t, loss)
2092 2093

        if normalizer is not None:
W
wanghuancoder 已提交
2094
            loss = _C_ops.elementwise_div(loss, normalizer)
2095 2096

        if reduction == "sum":
W
wanghuancoder 已提交
2097
            return _C_ops.reduce_sum(loss, 'reduce_all', True)
2098
        elif reduction == "mean":
2099 2100
            if in_dygraph_mode():
                return _C_ops.final_state_mean_all(loss)
W
wanghuancoder 已提交
2101
            return _C_ops.mean(loss)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

        return loss

    fluid.data_feeder.check_variable_and_dtype(
        logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss')

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
        logit, label, reduction='none', name=bce_name)

Z
zhiboniu 已提交
2116
    pred = paddle.nn.functional.sigmoid(logit)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215


def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

2216
    if not _non_static_mode():
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'hinge_embedding_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'hinge_embedding_loss')

    zero_ = paddle.zeros([1], dtype=input.dtype)
    loss = paddle.where(label == 1., input, zero_) + \
           paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss