loss.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define loss functions of neural network  
16 17 18 19
import paddle
import paddle.fluid as fluid
from ...fluid.framework import core, in_dygraph_mode
from ...fluid.layers.nn import _elementwise_op_in_dygraph
20 21 22 23 24 25 26 27 28 29
from ...fluid.layers import bpr_loss  #DEFINE_ALIAS
from ...fluid.layers import center_loss  #DEFINE_ALIAS
from ...fluid.layers import cross_entropy  #DEFINE_ALIAS
from ...fluid.layers import dice_loss  #DEFINE_ALIAS
from ...fluid.layers import iou_similarity  #DEFINE_ALIAS
from ...fluid.layers import kldiv_loss  #DEFINE_ALIAS
from ...fluid.layers import log_loss  #DEFINE_ALIAS
from ...fluid.layers import mse_loss  #DEFINE_ALIAS
from ...fluid.layers import npair_loss  #DEFINE_ALIAS
from ...fluid.layers import rank_loss  #DEFINE_ALIAS
30
from ...fluid.layers import reshape
31 32 33 34 35 36 37 38
from ...fluid.layers import sigmoid_cross_entropy_with_logits  #DEFINE_ALIAS
from ...fluid.layers import sigmoid_focal_loss  #DEFINE_ALIAS
from ...fluid.layers import smooth_l1  #DEFINE_ALIAS
from ...fluid.layers import softmax_with_cross_entropy  #DEFINE_ALIAS
from ...fluid.layers import square_error_cost  #DEFINE_ALIAS
from ...fluid.layers import ssd_loss  #DEFINE_ALIAS
from ...fluid.layers import teacher_student_sigmoid_loss  #DEFINE_ALIAS

39 40 41 42
from ...fluid.layers import edit_distance  #DEFINE_ALIAS
from ...fluid.layers import huber_loss  #DEFINE_ALIAS
from ...fluid.layers import margin_rank_loss  #DEFINE_ALIAS
from ...fluid.layers import sampled_softmax_with_cross_entropy  #DEFINE_ALIAS
43 44 45
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode
from ...fluid.framework import Variable
46

47 48 49 50 51
__all__ = [
    'bpr_loss',
    'center_loss',
    'cross_entropy',
    'dice_loss',
52 53
    'edit_distance',
    'huber_loss',
54 55
    'iou_similarity',
    'kldiv_loss',
56
    'l1_loss',
57
    'log_loss',
58
    'margin_rank_loss',
59 60
    'mse_loss',
    #       'nce',
61
    'nll_loss',
62 63
    'npair_loss',
    'rank_loss',
64
    'sampled_softmax_with_cross_entropy',
65 66 67 68 69 70 71 72
    'sigmoid_cross_entropy_with_logits',
    'sigmoid_focal_loss',
    'smooth_l1',
    'softmax_with_cross_entropy',
    'square_error_cost',
    'ssd_loss',
    'teacher_student_sigmoid_loss'
]
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161


def l1_loss(x, label, reduction='mean', name=None):
    """
    This operator computes the L1 Loss of Tensor ``x`` and ``label`` as follows.

    If :attr:`reduction` set to ``'none'``, the loss is:

    .. math::
        Out = \lvert x - label\rvert

    If :attr:`reduction` set to ``'mean'``, the loss is:

    .. math::
        Out = MEAN(\lvert x - label\rvert)

    If :attr:`reduction` set to ``'sum'``, the loss is:

    .. math::
        Out = SUM(\lvert x - label\rvert)

    
    Parameters:
        x (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``x`` . It's data type should be float32, float64, int32, int64.
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the L1 Loss of Tensor ``x`` and ``label``.
            If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``x`` .
            If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            
            paddle.disable_static()
            x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            x = paddle.to_variable(x_data)
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.functional.l1_loss(x, label)
            print(l1_loss.numpy())  
            # [0.35]

            l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='none')
            print(l1_loss.numpy())  
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

            l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='sum')
            print(l1_loss.numpy())  
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

    if in_dygraph_mode():
        unreduced = _elementwise_op_in_dygraph(
            x, label, axis=-1, act='abs', op_name='elementwise_sub')
        if reduction == 'mean':
            return core.ops.mean(unreduced)
        elif reduction == 'sum':
            return core.ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                       'reduce_all', True)
        else:
            return unreduced

    fluid.data_feeder.check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

    if reduction == 'sum':
        unreduced = paddle.elementwise_sub(x, label, act='abs')
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
        unreduced = paddle.elementwise_sub(x, label, act='abs')
        return paddle.mean(unreduced, name=name)
    else:
        return paddle.elementwise_sub(x, label, act='abs', name=name)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
                import paddle
                import numpy as np
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                     [0.53331435, 0.07999352, 0.8549948 ],
                                     [0.25879037, 0.39530203, 0.698465  ],
                                     [0.73427284, 0.63575995, 0.18827209],
                                     [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)

                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
        raise ValueError('Expected 2 or more dimensions (got {})'.format(
            input_dims))
    n = input_shape[0]
    c = input_shape[1]
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
            input, _ = core.ops.reshape2(input, 'shape', [n, c, 1, -1])
            label, _ = core.ops.reshape2(label, 'shape', [n, 1, -1])
            out_shape = [n] + input_shape[2:]
        out, total_weight = core.ops.nll_loss(input, label, weight,
                                              'ignore_index', ignore_index,
                                              'reduction', reduction)
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out, _ = core.ops.reshape2(out, 'shape', out_shape)
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'nll_loss')
    fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                               'nll_loss')
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out