test_imperative_deepcf.py 14.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.framework import _test_eager_guard
X
Xin Pan 已提交
28 29


30
class DMF(fluid.Layer):
31
    def __init__(self):
32
        super().__init__()
33 34
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
35 36 37 38 39 40 41 42

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
43 44 45 46 47 48 49
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
50 51 52
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
53 54 55 56 57 58 59
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


71
class MLP(fluid.Layer):
72
    def __init__(self):
73
        super().__init__()
74 75
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
76 77 78 79 80 81
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
82 83 84 85 86 87 88
                    Linear(
                        256 * 2 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
89 90 91 92

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
93 94 95
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1
        )
X
Xin Pan 已提交
96 97 98 99 100
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


101
class DeepCF(fluid.Layer):
102
    def __init__(self, num_users, num_items, matrix):
103
        super().__init__()
X
Xin Pan 已提交
104 105 106
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
107 108 109
            attr=fluid.ParamAttr(trainable=False),
            shape=matrix.shape,
            dtype=matrix.dtype,
X
Xin Pan 已提交
110
            is_bias=False,
111 112
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix),
        )
113
        self._rating_matrix.stop_gradient = True
X
Xin Pan 已提交
114

115 116 117
        self._mlp = MLP()
        self._dmf = DMF()
        self._match_fc = Linear(128, 1, act='sigmoid')
X
Xin Pan 已提交
118 119

    def forward(self, users, items):
X
Xin Pan 已提交
120 121
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
122

123 124
        users_emb = paddle.gather(self._rating_matrix, users)
        items_emb = paddle.gather(
125
            paddle.transpose(self._rating_matrix, [1, 0]), items
126
        )
X
Xin Pan 已提交
127 128
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
129 130 131

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
132 133 134
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive], axis=len(mlp_predictive.shape) - 1
        )
X
Xin Pan 已提交
135 136 137 138
        prediction = self._match_fc(predictive)
        return prediction


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
class TestDygraphDeepCF(unittest.TestCase):
    def setUp(self):
        # Can use Amusic dataset as the DeepCF describes.
        self.data_path = os.environ.get('DATA_PATH', '')

        self.batch_size = int(os.environ.get('BATCH_SIZE', 128))
        self.num_batches = int(os.environ.get('NUM_BATCHES', 5))
        self.num_epoches = int(os.environ.get('NUM_EPOCHES', 1))

    def get_data(self):
        user_ids = []
        item_ids = []
        labels = []
        NUM_USERS = 100
        NUM_ITEMS = 1000
        matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

        for uid in range(NUM_USERS):
            for iid in range(NUM_ITEMS):
                label = float(random.randint(1, 6) == 1)
                user_ids.append(uid)
                item_ids.append(iid)
                labels.append(label)
                matrix[uid, iid] = label
        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
168 169 170 171 172 173 174 175
        return (
            np.expand_dims(users_np, -1),
            np.expand_dims(items_np, -1),
            np.expand_dims(labels_np, -1),
            NUM_USERS,
            NUM_ITEMS,
            matrix,
        )
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    def load_data(self):
        sys.stderr.write('loading from %s\n' % self.data_path)
        likes = dict()
        num_users = -1
        num_items = -1
        with open(self.data_path, 'r') as f:
            for l in f.readlines():
                uid, iid, rating = [int(v) for v in l.split('\t')]
                num_users = max(num_users, uid + 1)
                num_items = max(num_items, iid + 1)
                if float(rating) > 0.0:
                    likes[(uid, iid)] = 1.0

        user_ids = []
        item_ids = []
        labels = []
        matrix = np.zeros([num_users, num_items], dtype=np.float32)
        for uid, iid in likes.keys():
X
Xin Pan 已提交
195 196
            user_ids.append(uid)
            item_ids.append(iid)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
            labels.append(1.0)
            matrix[uid, iid] = 1.0

            negative = 0
            while negative < 3:
                nuid = random.randint(0, num_users - 1)
                niid = random.randint(0, num_items - 1)
                if (nuid, niid) not in likes:
                    negative += 1
                    user_ids.append(nuid)
                    item_ids.append(niid)
                    labels.append(0.0)

        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
215 216 217 218 219 220 221 222
        return (
            np.expand_dims(users_np, -1),
            np.expand_dims(items_np, -1),
            np.expand_dims(labels_np, -1),
            num_users,
            num_items,
            matrix,
        )
223

X
Xin Pan 已提交
224
    def test_deefcf(self):
X
Xin Pan 已提交
225
        seed = 90
226
        if self.data_path:
227 228 229 230 231 232 233 234
            (
                users_np,
                items_np,
                labels_np,
                num_users,
                num_items,
                matrix,
            ) = self.load_data()
X
Xin Pan 已提交
235
        else:
236 237 238 239 240 241 242 243
            (
                users_np,
                items_np,
                labels_np,
                num_users,
                num_items,
                matrix,
            ) = self.get_data()
C
cnn 已提交
244
        paddle.seed(seed)
L
Leo Chen 已提交
245
        paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
246 247
        startup = fluid.Program()
        main = fluid.Program()
X
polish  
Xin Pan 已提交
248

X
Xin Pan 已提交
249 250
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
251 252
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
253 254
            labels = fluid.layers.data('labels', [1], dtype='float32')

255
            deepcf = DeepCF(num_users, num_items, matrix)
X
Xin Pan 已提交
256 257
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
258 259
                fluid.layers.log_loss(prediction, labels)
            )
X
Xin Pan 已提交
260 261 262
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

263 264 265 266 267
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
X
Xin Pan 已提交
268
            exe.run(startup)
269
            for e in range(self.num_epoches):
X
Xin Pan 已提交
270
                sys.stderr.write('epoch %d\n' % e)
271 272 273
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
274
                    if slice + self.batch_size >= users_np.shape[0]:
X
Xin Pan 已提交
275 276 277 278
                        break
                    static_loss = exe.run(
                        main,
                        feed={
279 280 281 282 283 284 285 286 287
                            users.name: users_np[
                                slice : slice + self.batch_size
                            ],
                            items.name: items_np[
                                slice : slice + self.batch_size
                            ],
                            labels.name: labels_np[
                                slice : slice + self.batch_size
                            ],
X
Xin Pan 已提交
288
                        },
289 290
                        fetch_list=[loss],
                    )[0]
X
Xin Pan 已提交
291
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
292

L
lujun 已提交
293
        with fluid.dygraph.guard():
C
cnn 已提交
294
            paddle.seed(seed)
L
Leo Chen 已提交
295
            paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
296

297 298
            deepcf = DeepCF(num_users, num_items, matrix)
            adam = fluid.optimizer.AdamOptimizer(
299 300
                0.01, parameter_list=deepcf.parameters()
            )
301
            for e in range(self.num_epoches):
X
Xin Pan 已提交
302
                sys.stderr.write('epoch %d\n' % e)
303 304 305
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
306
                    if slice + self.batch_size >= users_np.shape[0]:
X
polish  
Xin Pan 已提交
307
                        break
X
Xin Pan 已提交
308
                    prediction = deepcf(
309 310 311
                        to_variable(users_np[slice : slice + self.batch_size]),
                        to_variable(items_np[slice : slice + self.batch_size]),
                    )
X
Xin Pan 已提交
312
                    loss = fluid.layers.reduce_sum(
313 314
                        fluid.layers.log_loss(
                            prediction,
315 316 317 318 319
                            to_variable(
                                labels_np[slice : slice + self.batch_size]
                            ),
                        )
                    )
L
lujun 已提交
320
                    loss.backward()
X
Xin Pan 已提交
321 322
                    adam.minimize(loss)
                    deepcf.clear_gradients()
323
                    dy_loss = loss.numpy()
X
polish  
Xin Pan 已提交
324
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
325

326
        with fluid.dygraph.guard():
C
cnn 已提交
327
            paddle.seed(seed)
L
Leo Chen 已提交
328
            paddle.framework.random._manual_program_seed(seed)
329

330 331
            deepcf2 = DeepCF(num_users, num_items, matrix)
            adam2 = fluid.optimizer.AdamOptimizer(
332 333
                0.01, parameter_list=deepcf2.parameters()
            )
334
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
335
            for e in range(self.num_epoches):
336
                sys.stderr.write('epoch %d\n' % e)
337 338 339
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
340
                    if slice + self.batch_size >= users_np.shape[0]:
341 342
                        break
                    prediction2 = deepcf2(
343 344 345
                        to_variable(users_np[slice : slice + self.batch_size]),
                        to_variable(items_np[slice : slice + self.batch_size]),
                    )
346
                    loss2 = fluid.layers.reduce_sum(
347 348
                        fluid.layers.log_loss(
                            prediction2,
349 350 351 352 353
                            to_variable(
                                labels_np[slice : slice + self.batch_size]
                            ),
                        )
                    )
354
                    loss2.backward()
355 356 357
                    adam2.minimize(loss2)
                    deepcf2.clear_gradients()
                    dy_loss2 = loss2.numpy()
358 359 360
                    sys.stderr.write(
                        'dynamic loss: %s %s\n' % (slice, dy_loss2)
                    )
361

362 363 364 365 366 367 368 369 370
        with fluid.dygraph.guard():
            with _test_eager_guard():
                paddle.seed(seed)
                paddle.framework.random._manual_program_seed(seed)
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed

                deepcf = DeepCF(num_users, num_items, matrix)
                adam = fluid.optimizer.AdamOptimizer(
371 372
                    0.01, parameter_list=deepcf.parameters()
                )
373

374
                for e in range(self.num_epoches):
375
                    sys.stderr.write('epoch %d\n' % e)
376 377 378
                    for slice in range(
                        0, self.batch_size * self.num_batches, self.batch_size
                    ):
379
                        if slice + self.batch_size >= users_np.shape[0]:
380 381
                            break
                        prediction = deepcf(
382 383 384 385 386 387 388
                            to_variable(
                                users_np[slice : slice + self.batch_size]
                            ),
                            to_variable(
                                items_np[slice : slice + self.batch_size]
                            ),
                        )
389
                        loss = fluid.layers.reduce_sum(
390 391
                            fluid.layers.log_loss(
                                prediction,
392 393 394 395 396
                                to_variable(
                                    labels_np[slice : slice + self.batch_size]
                                ),
                            )
                        )
397 398 399 400
                        loss.backward()
                        adam.minimize(loss)
                        deepcf.clear_gradients()
                        eager_loss = loss.numpy()
401 402 403
                        sys.stderr.write(
                            'eager loss: %s %s\n' % (slice, eager_loss)
                        )
404

X
Xin Pan 已提交
405
        self.assertEqual(static_loss, dy_loss)
406
        self.assertEqual(static_loss, dy_loss2)
407
        self.assertEqual(static_loss, eager_loss)
X
Xin Pan 已提交
408 409 410


if __name__ == '__main__':
411
    paddle.enable_static()
X
Xin Pan 已提交
412
    unittest.main()