test_imperative_deepcf.py 14.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.framework import _test_eager_guard
X
Xin Pan 已提交
28 29


30
class DMF(fluid.Layer):
31
    def __init__(self):
32
        super().__init__()
33 34
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
35 36 37 38 39 40 41 42

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
43 44 45 46 47 48 49
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
50 51 52
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
53 54 55 56 57 58 59
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


71
class MLP(fluid.Layer):
72
    def __init__(self):
73
        super().__init__()
74 75
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
76 77 78 79 80 81
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
82 83 84 85 86 87 88
                    Linear(
                        256 * 2 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
89 90 91 92

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
93 94 95
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1
        )
X
Xin Pan 已提交
96 97 98 99 100
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


101
class DeepCF(fluid.Layer):
102
    def __init__(self, num_users, num_items, matrix):
103
        super().__init__()
X
Xin Pan 已提交
104 105 106
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
107 108 109
            attr=fluid.ParamAttr(trainable=False),
            shape=matrix.shape,
            dtype=matrix.dtype,
X
Xin Pan 已提交
110
            is_bias=False,
111 112
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix),
        )
113
        self._rating_matrix.stop_gradient = True
X
Xin Pan 已提交
114

115 116 117
        self._mlp = MLP()
        self._dmf = DMF()
        self._match_fc = Linear(128, 1, act='sigmoid')
X
Xin Pan 已提交
118 119

    def forward(self, users, items):
X
Xin Pan 已提交
120 121
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
122 123
        users_emb = paddle.gather(self._rating_matrix, users)
        items_emb = paddle.gather(
124 125
            fluid.layers.transpose(self._rating_matrix, [1, 0]), items
        )
X
Xin Pan 已提交
126 127
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
128 129 130

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
131 132 133
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive], axis=len(mlp_predictive.shape) - 1
        )
X
Xin Pan 已提交
134 135 136 137
        prediction = self._match_fc(predictive)
        return prediction


138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
class TestDygraphDeepCF(unittest.TestCase):
    def setUp(self):
        # Can use Amusic dataset as the DeepCF describes.
        self.data_path = os.environ.get('DATA_PATH', '')

        self.batch_size = int(os.environ.get('BATCH_SIZE', 128))
        self.num_batches = int(os.environ.get('NUM_BATCHES', 5))
        self.num_epoches = int(os.environ.get('NUM_EPOCHES', 1))

    def get_data(self):
        user_ids = []
        item_ids = []
        labels = []
        NUM_USERS = 100
        NUM_ITEMS = 1000
        matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

        for uid in range(NUM_USERS):
            for iid in range(NUM_ITEMS):
                label = float(random.randint(1, 6) == 1)
                user_ids.append(uid)
                item_ids.append(iid)
                labels.append(label)
                matrix[uid, iid] = label
        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
167 168 169 170 171 172 173 174
        return (
            np.expand_dims(users_np, -1),
            np.expand_dims(items_np, -1),
            np.expand_dims(labels_np, -1),
            NUM_USERS,
            NUM_ITEMS,
            matrix,
        )
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    def load_data(self):
        sys.stderr.write('loading from %s\n' % self.data_path)
        likes = dict()
        num_users = -1
        num_items = -1
        with open(self.data_path, 'r') as f:
            for l in f.readlines():
                uid, iid, rating = [int(v) for v in l.split('\t')]
                num_users = max(num_users, uid + 1)
                num_items = max(num_items, iid + 1)
                if float(rating) > 0.0:
                    likes[(uid, iid)] = 1.0

        user_ids = []
        item_ids = []
        labels = []
        matrix = np.zeros([num_users, num_items], dtype=np.float32)
        for uid, iid in likes.keys():
X
Xin Pan 已提交
194 195
            user_ids.append(uid)
            item_ids.append(iid)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
            labels.append(1.0)
            matrix[uid, iid] = 1.0

            negative = 0
            while negative < 3:
                nuid = random.randint(0, num_users - 1)
                niid = random.randint(0, num_items - 1)
                if (nuid, niid) not in likes:
                    negative += 1
                    user_ids.append(nuid)
                    item_ids.append(niid)
                    labels.append(0.0)

        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
214 215 216 217 218 219 220 221
        return (
            np.expand_dims(users_np, -1),
            np.expand_dims(items_np, -1),
            np.expand_dims(labels_np, -1),
            num_users,
            num_items,
            matrix,
        )
222

X
Xin Pan 已提交
223
    def test_deefcf(self):
X
Xin Pan 已提交
224
        seed = 90
225
        if self.data_path:
226 227 228 229 230 231 232 233
            (
                users_np,
                items_np,
                labels_np,
                num_users,
                num_items,
                matrix,
            ) = self.load_data()
X
Xin Pan 已提交
234
        else:
235 236 237 238 239 240 241 242
            (
                users_np,
                items_np,
                labels_np,
                num_users,
                num_items,
                matrix,
            ) = self.get_data()
C
cnn 已提交
243
        paddle.seed(seed)
L
Leo Chen 已提交
244
        paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
245 246
        startup = fluid.Program()
        main = fluid.Program()
X
polish  
Xin Pan 已提交
247

X
Xin Pan 已提交
248 249
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
250 251
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
252 253
            labels = fluid.layers.data('labels', [1], dtype='float32')

254
            deepcf = DeepCF(num_users, num_items, matrix)
X
Xin Pan 已提交
255 256
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
257 258
                fluid.layers.log_loss(prediction, labels)
            )
X
Xin Pan 已提交
259 260 261
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

262 263 264 265 266
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
X
Xin Pan 已提交
267
            exe.run(startup)
268
            for e in range(self.num_epoches):
X
Xin Pan 已提交
269
                sys.stderr.write('epoch %d\n' % e)
270 271 272
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
273
                    if slice + self.batch_size >= users_np.shape[0]:
X
Xin Pan 已提交
274 275 276 277
                        break
                    static_loss = exe.run(
                        main,
                        feed={
278 279 280 281 282 283 284 285 286
                            users.name: users_np[
                                slice : slice + self.batch_size
                            ],
                            items.name: items_np[
                                slice : slice + self.batch_size
                            ],
                            labels.name: labels_np[
                                slice : slice + self.batch_size
                            ],
X
Xin Pan 已提交
287
                        },
288 289
                        fetch_list=[loss],
                    )[0]
X
Xin Pan 已提交
290
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
291

L
lujun 已提交
292
        with fluid.dygraph.guard():
C
cnn 已提交
293
            paddle.seed(seed)
L
Leo Chen 已提交
294
            paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
295

296 297
            deepcf = DeepCF(num_users, num_items, matrix)
            adam = fluid.optimizer.AdamOptimizer(
298 299
                0.01, parameter_list=deepcf.parameters()
            )
300
            for e in range(self.num_epoches):
X
Xin Pan 已提交
301
                sys.stderr.write('epoch %d\n' % e)
302 303 304
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
305
                    if slice + self.batch_size >= users_np.shape[0]:
X
polish  
Xin Pan 已提交
306
                        break
X
Xin Pan 已提交
307
                    prediction = deepcf(
308 309 310
                        to_variable(users_np[slice : slice + self.batch_size]),
                        to_variable(items_np[slice : slice + self.batch_size]),
                    )
X
Xin Pan 已提交
311
                    loss = fluid.layers.reduce_sum(
312 313
                        fluid.layers.log_loss(
                            prediction,
314 315 316 317 318
                            to_variable(
                                labels_np[slice : slice + self.batch_size]
                            ),
                        )
                    )
L
lujun 已提交
319
                    loss.backward()
X
Xin Pan 已提交
320 321
                    adam.minimize(loss)
                    deepcf.clear_gradients()
322
                    dy_loss = loss.numpy()
X
polish  
Xin Pan 已提交
323
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
324

325
        with fluid.dygraph.guard():
C
cnn 已提交
326
            paddle.seed(seed)
L
Leo Chen 已提交
327
            paddle.framework.random._manual_program_seed(seed)
328

329 330
            deepcf2 = DeepCF(num_users, num_items, matrix)
            adam2 = fluid.optimizer.AdamOptimizer(
331 332
                0.01, parameter_list=deepcf2.parameters()
            )
333
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
334
            for e in range(self.num_epoches):
335
                sys.stderr.write('epoch %d\n' % e)
336 337 338
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
339
                    if slice + self.batch_size >= users_np.shape[0]:
340 341
                        break
                    prediction2 = deepcf2(
342 343 344
                        to_variable(users_np[slice : slice + self.batch_size]),
                        to_variable(items_np[slice : slice + self.batch_size]),
                    )
345
                    loss2 = fluid.layers.reduce_sum(
346 347
                        fluid.layers.log_loss(
                            prediction2,
348 349 350 351 352
                            to_variable(
                                labels_np[slice : slice + self.batch_size]
                            ),
                        )
                    )
353
                    loss2.backward()
354 355 356
                    adam2.minimize(loss2)
                    deepcf2.clear_gradients()
                    dy_loss2 = loss2.numpy()
357 358 359
                    sys.stderr.write(
                        'dynamic loss: %s %s\n' % (slice, dy_loss2)
                    )
360

361 362 363 364 365 366 367 368 369
        with fluid.dygraph.guard():
            with _test_eager_guard():
                paddle.seed(seed)
                paddle.framework.random._manual_program_seed(seed)
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed

                deepcf = DeepCF(num_users, num_items, matrix)
                adam = fluid.optimizer.AdamOptimizer(
370 371
                    0.01, parameter_list=deepcf.parameters()
                )
372

373
                for e in range(self.num_epoches):
374
                    sys.stderr.write('epoch %d\n' % e)
375 376 377
                    for slice in range(
                        0, self.batch_size * self.num_batches, self.batch_size
                    ):
378
                        if slice + self.batch_size >= users_np.shape[0]:
379 380
                            break
                        prediction = deepcf(
381 382 383 384 385 386 387
                            to_variable(
                                users_np[slice : slice + self.batch_size]
                            ),
                            to_variable(
                                items_np[slice : slice + self.batch_size]
                            ),
                        )
388
                        loss = fluid.layers.reduce_sum(
389 390
                            fluid.layers.log_loss(
                                prediction,
391 392 393 394 395
                                to_variable(
                                    labels_np[slice : slice + self.batch_size]
                                ),
                            )
                        )
396 397 398 399
                        loss.backward()
                        adam.minimize(loss)
                        deepcf.clear_gradients()
                        eager_loss = loss.numpy()
400 401 402
                        sys.stderr.write(
                            'eager loss: %s %s\n' % (slice, eager_loss)
                        )
403

X
Xin Pan 已提交
404
        self.assertEqual(static_loss, dy_loss)
405
        self.assertEqual(static_loss, dy_loss2)
406
        self.assertEqual(static_loss, eager_loss)
X
Xin Pan 已提交
407 408 409


if __name__ == '__main__':
410
    paddle.enable_static()
X
Xin Pan 已提交
411
    unittest.main()