test_imperative_deepcf.py 12.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.framework import _test_eager_guard
X
Xin Pan 已提交
28

X
polish  
Xin Pan 已提交
29
# Can use Amusic dataset as the DeepCF describes.
X
Xin Pan 已提交
30
DATA_PATH = os.environ.get('DATA_PATH', '')
X
polish  
Xin Pan 已提交
31 32 33

BATCH_SIZE = int(os.environ.get('BATCH_SIZE', 128))
NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
X
Xin Pan 已提交
34
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
X
Xin Pan 已提交
35 36


37
class DMF(fluid.Layer):
38

39 40 41 42
    def __init__(self):
        super(DMF, self).__init__()
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
43 44 45 46 47 48 49 50

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
51 52 53
                    Linear(256 if i == 0 else self._hid_sizes[i - 1],
                           self._hid_sizes[i],
                           act='relu')))
X
Xin Pan 已提交
54 55 56
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
57 58 59
                    Linear(256 if i == 0 else self._hid_sizes[i - 1],
                           self._hid_sizes[i],
                           act='relu')))
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


71
class MLP(fluid.Layer):
72

73 74 75 76
    def __init__(self):
        super(MLP, self).__init__()
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
77 78 79 80 81 82
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
83 84 85
                    Linear(256 * 2 if i == 0 else self._hid_sizes[i - 1],
                           self._hid_sizes[i],
                           act='relu')))
X
Xin Pan 已提交
86 87 88 89

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
90 91
        match_vec = fluid.layers.concat([users, items],
                                        axis=len(users.shape) - 1)
X
Xin Pan 已提交
92 93 94 95 96
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


97
class DeepCF(fluid.Layer):
98

99 100
    def __init__(self, num_users, num_items, matrix):
        super(DeepCF, self).__init__()
X
Xin Pan 已提交
101 102 103
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
104 105 106
            attr=fluid.ParamAttr(trainable=False),
            shape=matrix.shape,
            dtype=matrix.dtype,
X
Xin Pan 已提交
107 108
            is_bias=False,
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
109
        self._rating_matrix.stop_gradient = True
X
Xin Pan 已提交
110

111 112 113
        self._mlp = MLP()
        self._dmf = DMF()
        self._match_fc = Linear(128, 1, act='sigmoid')
X
Xin Pan 已提交
114 115

    def forward(self, users, items):
X
Xin Pan 已提交
116 117 118 119 120 121 122
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
        users_emb = fluid.layers.gather(self._rating_matrix, users)
        items_emb = fluid.layers.gather(
            fluid.layers.transpose(self._rating_matrix, [1, 0]), items)
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
123 124 125

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
126 127
        predictive = fluid.layers.concat([mlp_predictive, dmf_predictive],
                                         axis=len(mlp_predictive.shape) - 1)
X
Xin Pan 已提交
128 129 130 131 132 133 134 135
        prediction = self._match_fc(predictive)
        return prediction


def get_data():
    user_ids = []
    item_ids = []
    labels = []
X
Xin Pan 已提交
136 137
    NUM_USERS = 100
    NUM_ITEMS = 1000
X
polish  
Xin Pan 已提交
138 139
    matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

X
Xin Pan 已提交
140 141
    for uid in range(NUM_USERS):
        for iid in range(NUM_ITEMS):
X
Xin Pan 已提交
142
            label = float(random.randint(1, 6) == 1)
X
Xin Pan 已提交
143 144 145
            user_ids.append(uid)
            item_ids.append(iid)
            labels.append(label)
X
Xin Pan 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            matrix[uid, iid] = label
    indices = np.arange(len(user_ids))
    np.random.shuffle(indices)
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
           np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix


def load_data(DATA_PATH):
    sys.stderr.write('loading from %s\n' % DATA_PATH)
    likes = dict()
    num_users = -1
    num_items = -1
    with open(DATA_PATH, 'r') as f:
        for l in f.readlines():
            uid, iid, rating = [int(v) for v in l.split('\t')]
            num_users = max(num_users, uid + 1)
            num_items = max(num_items, iid + 1)
            if float(rating) > 0.0:
                likes[(uid, iid)] = 1.0

    user_ids = []
    item_ids = []
    labels = []
    matrix = np.zeros([num_users, num_items], dtype=np.float32)
    for uid, iid in likes.keys():
        user_ids.append(uid)
        item_ids.append(iid)
        labels.append(1.0)
        matrix[uid, iid] = 1.0

        negative = 0
        while negative < 3:
            nuid = random.randint(0, num_users - 1)
            niid = random.randint(0, num_items - 1)
            if (nuid, niid) not in likes:
                negative += 1
                user_ids.append(nuid)
                item_ids.append(niid)
                labels.append(0.0)

    indices = np.arange(len(user_ids))
X
Xin Pan 已提交
191
    np.random.shuffle(indices)
X
Xin Pan 已提交
192 193
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
X
Xin Pan 已提交
194 195 196
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
X
Xin Pan 已提交
197
           np.expand_dims(labels_np, -1), num_users, num_items, matrix
X
Xin Pan 已提交
198 199


L
lujun 已提交
200
class TestDygraphDeepCF(unittest.TestCase):
201

X
Xin Pan 已提交
202
    def test_deefcf(self):
X
Xin Pan 已提交
203
        seed = 90
X
Xin Pan 已提交
204 205 206 207 208 209
        if DATA_PATH:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = load_data(DATA_PATH)
        else:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = get_data()
C
cnn 已提交
210
        paddle.seed(seed)
L
Leo Chen 已提交
211
        paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
212 213
        startup = fluid.Program()
        main = fluid.Program()
X
polish  
Xin Pan 已提交
214

X
Xin Pan 已提交
215 216
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
217 218
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
219 220
            labels = fluid.layers.data('labels', [1], dtype='float32')

221
            deepcf = DeepCF(num_users, num_items, matrix)
X
Xin Pan 已提交
222 223 224 225 226 227 228 229 230
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
                fluid.layers.log_loss(prediction, labels))
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
X
Xin Pan 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    static_loss = exe.run(
                        main,
                        feed={
                            users.name: users_np[slice:slice + BATCH_SIZE],
                            items.name: items_np[slice:slice + BATCH_SIZE],
                            labels.name: labels_np[slice:slice + BATCH_SIZE]
                        },
                        fetch_list=[loss])[0]
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
245

L
lujun 已提交
246
        with fluid.dygraph.guard():
C
cnn 已提交
247
            paddle.seed(seed)
L
Leo Chen 已提交
248
            paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
249

250 251 252
            deepcf = DeepCF(num_users, num_items, matrix)
            adam = fluid.optimizer.AdamOptimizer(
                0.01, parameter_list=deepcf.parameters())
X
Xin Pan 已提交
253 254 255
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
X
polish  
Xin Pan 已提交
256 257
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
X
Xin Pan 已提交
258 259 260 261
                    prediction = deepcf(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss = fluid.layers.reduce_sum(
262 263 264
                        fluid.layers.log_loss(
                            prediction,
                            to_variable(labels_np[slice:slice + BATCH_SIZE])))
L
lujun 已提交
265
                    loss.backward()
X
Xin Pan 已提交
266 267
                    adam.minimize(loss)
                    deepcf.clear_gradients()
268
                    dy_loss = loss.numpy()
X
polish  
Xin Pan 已提交
269
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
270

271
        with fluid.dygraph.guard():
C
cnn 已提交
272
            paddle.seed(seed)
L
Leo Chen 已提交
273
            paddle.framework.random._manual_program_seed(seed)
274

275 276 277
            deepcf2 = DeepCF(num_users, num_items, matrix)
            adam2 = fluid.optimizer.AdamOptimizer(
                0.01, parameter_list=deepcf2.parameters())
278
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
279 280 281 282 283 284 285 286 287
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    prediction2 = deepcf2(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss2 = fluid.layers.reduce_sum(
288 289 290
                        fluid.layers.log_loss(
                            prediction2,
                            to_variable(labels_np[slice:slice + BATCH_SIZE])))
291
                    loss2.backward()
292 293 294 295 296 297
                    adam2.minimize(loss2)
                    deepcf2.clear_gradients()
                    dy_loss2 = loss2.numpy()
                    sys.stderr.write('dynamic loss: %s %s\n' %
                                     (slice, dy_loss2))

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        with fluid.dygraph.guard():
            with _test_eager_guard():
                paddle.seed(seed)
                paddle.framework.random._manual_program_seed(seed)
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed

                deepcf = DeepCF(num_users, num_items, matrix)
                adam = fluid.optimizer.AdamOptimizer(
                    0.01, parameter_list=deepcf.parameters())

                for e in range(NUM_EPOCHES):
                    sys.stderr.write('epoch %d\n' % e)
                    for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                        if slice + BATCH_SIZE >= users_np.shape[0]:
                            break
                        prediction = deepcf(
                            to_variable(users_np[slice:slice + BATCH_SIZE]),
                            to_variable(items_np[slice:slice + BATCH_SIZE]))
                        loss = fluid.layers.reduce_sum(
318 319 320 321
                            fluid.layers.log_loss(
                                prediction,
                                to_variable(labels_np[slice:slice +
                                                      BATCH_SIZE])))
322 323 324 325 326 327 328
                        loss.backward()
                        adam.minimize(loss)
                        deepcf.clear_gradients()
                        eager_loss = loss.numpy()
                        sys.stderr.write('eager loss: %s %s\n' %
                                         (slice, eager_loss))

X
Xin Pan 已提交
329
        self.assertEqual(static_loss, dy_loss)
330
        self.assertEqual(static_loss, dy_loss2)
331
        self.assertEqual(static_loss, eager_loss)
X
Xin Pan 已提交
332 333 334


if __name__ == '__main__':
335
    paddle.enable_static()
X
Xin Pan 已提交
336
    unittest.main()