test_imperative_deepcf.py 10.4 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24 25 26
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
from paddle.fluid.imperative.base import to_variable

X
Xin Pan 已提交
27 28 29 30
DATA_PATH = os.environ.get('DATA_PATH', '')
BATCH_SIZE = int(os.environ.get('BATCH_SIZE', 256))
NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 2))
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
X
Xin Pan 已提交
31 32


X
Xin Pan 已提交
33
class DMF(fluid.imperative.Layer):
X
Xin Pan 已提交
34
    def __init__(self, name_scope):
X
Xin Pan 已提交
35
        super(DMF, self).__init__(name_scope)
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        self._user_latent = fluid.imperative.FC(self.full_name(), 256)
        self._item_latent = fluid.imperative.FC(self.full_name(), 256)

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


X
Xin Pan 已提交
64
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
65
    def __init__(self, name_scope):
X
Xin Pan 已提交
66
        super(MLP, self).__init__(name_scope)
X
Xin Pan 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        self._user_latent = fluid.imperative.FC(self.full_name(), 256)
        self._item_latent = fluid.imperative.FC(self.full_name(), 256)
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))
        self._mat

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1)
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


class DeepCF(fluid.imperative.Layer):
X
Xin Pan 已提交
90
    def __init__(self, name_scope, num_users, num_items, matrix):
X
Xin Pan 已提交
91
        super(DeepCF, self).__init__(name_scope)
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
            None,
            matrix.shape,
            matrix.dtype,
            is_bias=False,
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
        self._rating_matrix._stop_gradient = True
X
Xin Pan 已提交
101

X
Xin Pan 已提交
102 103 104 105
        # self._user_emb = fluid.imperative.Embedding(self.full_name(),
        #                                             [self._num_users, 256])
        # self._item_emb = fluid.imperative.Embedding(self.full_name(),
        #                                             [self._num_items, 256])
X
Xin Pan 已提交
106 107 108 109 110 111

        self._mlp = MLP(self.full_name())
        self._dmf = DMF(self.full_name())
        self._match_fc = fluid.imperative.FC(self.full_name(), 1, act='sigmoid')

    def forward(self, users, items):
X
Xin Pan 已提交
112 113 114 115 116 117 118 119
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
        sys.stderr.write('forward: %s\n' % users._stop_gradient)
        users_emb = fluid.layers.gather(self._rating_matrix, users)
        items_emb = fluid.layers.gather(
            fluid.layers.transpose(self._rating_matrix, [1, 0]), items)
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive],
            axis=len(mlp_predictive.shape) - 1)
        prediction = self._match_fc(predictive)
        return prediction


def get_data():
    user_ids = []
    item_ids = []
    labels = []
X
Xin Pan 已提交
134 135 136 137
    matrix = np.zeros([100, 1000], dtype=np.float32)

    NUM_USERS = 100
    NUM_ITEMS = 1000
X
Xin Pan 已提交
138 139
    for uid in range(NUM_USERS):
        for iid in range(NUM_ITEMS):
X
Xin Pan 已提交
140
            label = float(random.randint(1, 6) == 1)
X
Xin Pan 已提交
141 142 143
            user_ids.append(uid)
            item_ids.append(iid)
            labels.append(label)
X
Xin Pan 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            matrix[uid, iid] = label
    indices = np.arange(len(user_ids))
    np.random.shuffle(indices)
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
           np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix


def load_data(DATA_PATH):
    sys.stderr.write('loading from %s\n' % DATA_PATH)
    likes = dict()
    num_users = -1
    num_items = -1
    with open(DATA_PATH, 'r') as f:
        for l in f.readlines():
            uid, iid, rating = [int(v) for v in l.split('\t')]
            num_users = max(num_users, uid + 1)
            num_items = max(num_items, iid + 1)
            if float(rating) > 0.0:
                likes[(uid, iid)] = 1.0

    user_ids = []
    item_ids = []
    labels = []
    matrix = np.zeros([num_users, num_items], dtype=np.float32)
    for uid, iid in likes.keys():
        user_ids.append(uid)
        item_ids.append(iid)
        labels.append(1.0)
        matrix[uid, iid] = 1.0

        negative = 0
        while negative < 3:
            nuid = random.randint(0, num_users - 1)
            niid = random.randint(0, num_items - 1)
            if (nuid, niid) not in likes:
                negative += 1
                user_ids.append(nuid)
                item_ids.append(niid)
                labels.append(0.0)

    indices = np.arange(len(user_ids))
X
Xin Pan 已提交
189
    np.random.shuffle(indices)
X
Xin Pan 已提交
190 191
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
X
Xin Pan 已提交
192 193 194
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
X
Xin Pan 已提交
195
           np.expand_dims(labels_np, -1), num_users, num_items, matrix
X
Xin Pan 已提交
196 197 198


class TestImperativeDeepCF(unittest.TestCase):
X
Xin Pan 已提交
199
    def test_deefcf(self):
X
Xin Pan 已提交
200
        seed = 90
X
Xin Pan 已提交
201 202 203 204 205 206
        if DATA_PATH:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = load_data(DATA_PATH)
        else:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = get_data()
X
Xin Pan 已提交
207 208 209 210 211

        startup = fluid.Program()
        startup.random_seed = seed
        main = fluid.Program()
        main.random_seed = seed
X
Xin Pan 已提交
212
        """
X
Xin Pan 已提交
213 214
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
215 216
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
217 218
            labels = fluid.layers.data('labels', [1], dtype='float32')

X
Xin Pan 已提交
219
            deepcf = DeepCF('deepcf', num_users, num_items, matrix)
X
Xin Pan 已提交
220 221 222 223 224 225 226 227 228
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
                fluid.layers.log_loss(prediction, labels))
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
X
Xin Pan 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    static_loss = exe.run(
                        main,
                        feed={
                            users.name: users_np[slice:slice + BATCH_SIZE],
                            items.name: items_np[slice:slice + BATCH_SIZE],
                            labels.name: labels_np[slice:slice + BATCH_SIZE]
                        },
                        fetch_list=[loss])[0]
                    sys.stderr.write('static loss %s\n' % static_loss)
        """
X
Xin Pan 已提交
244 245 246 247 248

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

X
Xin Pan 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            deepcf = DeepCF('deepcf', num_users, num_items, matrix)
            sys.stderr.write('matrix: %s\n' % deepcf._rating_matrix._numpy())
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    prediction = deepcf(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss = fluid.layers.reduce_sum(
                        fluid.layers.log_loss(prediction,
                                              to_variable(labels_np[
                                                  slice:slice + BATCH_SIZE])))
                    loss._backward()
                    adam = fluid.optimizer.AdamOptimizer(0.01)
                    adam.minimize(loss)
                    deepcf.clear_gradients()
                    dy_loss = loss._numpy()
                    sys.stderr.write('dynamic loss: %s\n' % dy_loss)
            sys.stderr.write('matrix: %s\n' % deepcf._rating_matrix._numpy())
X
Xin Pan 已提交
268 269 270 271 272 273

        self.assertEqual(static_loss, dy_loss)


if __name__ == '__main__':
    unittest.main()