test_imperative_deepcf.py 13.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.framework import _test_eager_guard
X
Xin Pan 已提交
28 29


30
class DMF(fluid.Layer):
31

32 33 34 35
    def __init__(self):
        super(DMF, self).__init__()
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
36 37 38 39 40 41 42 43

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
44 45 46
                    Linear(256 if i == 0 else self._hid_sizes[i - 1],
                           self._hid_sizes[i],
                           act='relu')))
X
Xin Pan 已提交
47 48 49
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
50 51 52
                    Linear(256 if i == 0 else self._hid_sizes[i - 1],
                           self._hid_sizes[i],
                           act='relu')))
X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62 63

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


64
class MLP(fluid.Layer):
65

66 67 68 69
    def __init__(self):
        super(MLP, self).__init__()
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
70 71 72 73 74 75
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
76 77 78
                    Linear(256 * 2 if i == 0 else self._hid_sizes[i - 1],
                           self._hid_sizes[i],
                           act='relu')))
X
Xin Pan 已提交
79 80 81 82

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
83 84
        match_vec = fluid.layers.concat([users, items],
                                        axis=len(users.shape) - 1)
X
Xin Pan 已提交
85 86 87 88 89
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


90
class DeepCF(fluid.Layer):
91

92 93
    def __init__(self, num_users, num_items, matrix):
        super(DeepCF, self).__init__()
X
Xin Pan 已提交
94 95 96
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
97 98 99
            attr=fluid.ParamAttr(trainable=False),
            shape=matrix.shape,
            dtype=matrix.dtype,
X
Xin Pan 已提交
100 101
            is_bias=False,
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
102
        self._rating_matrix.stop_gradient = True
X
Xin Pan 已提交
103

104 105 106
        self._mlp = MLP()
        self._dmf = DMF()
        self._match_fc = Linear(128, 1, act='sigmoid')
X
Xin Pan 已提交
107 108

    def forward(self, users, items):
X
Xin Pan 已提交
109 110 111 112 113 114 115
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
        users_emb = fluid.layers.gather(self._rating_matrix, users)
        items_emb = fluid.layers.gather(
            fluid.layers.transpose(self._rating_matrix, [1, 0]), items)
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
116 117 118

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
119 120
        predictive = fluid.layers.concat([mlp_predictive, dmf_predictive],
                                         axis=len(mlp_predictive.shape) - 1)
X
Xin Pan 已提交
121 122 123 124
        prediction = self._match_fc(predictive)
        return prediction


125
class TestDygraphDeepCF(unittest.TestCase):
X
polish  
Xin Pan 已提交
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    def setUp(self):
        # Can use Amusic dataset as the DeepCF describes.
        self.data_path = os.environ.get('DATA_PATH', '')

        self.batch_size = int(os.environ.get('BATCH_SIZE', 128))
        self.num_batches = int(os.environ.get('NUM_BATCHES', 5))
        self.num_epoches = int(os.environ.get('NUM_EPOCHES', 1))

    def get_data(self):
        user_ids = []
        item_ids = []
        labels = []
        NUM_USERS = 100
        NUM_ITEMS = 1000
        matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

        for uid in range(NUM_USERS):
            for iid in range(NUM_ITEMS):
                label = float(random.randint(1, 6) == 1)
                user_ids.append(uid)
                item_ids.append(iid)
                labels.append(label)
                matrix[uid, iid] = label
        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
        return np.expand_dims(users_np, -1), \
            np.expand_dims(items_np, -1), \
            np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix

    def load_data(self):
        sys.stderr.write('loading from %s\n' % self.data_path)
        likes = dict()
        num_users = -1
        num_items = -1
        with open(self.data_path, 'r') as f:
            for l in f.readlines():
                uid, iid, rating = [int(v) for v in l.split('\t')]
                num_users = max(num_users, uid + 1)
                num_items = max(num_items, iid + 1)
                if float(rating) > 0.0:
                    likes[(uid, iid)] = 1.0

        user_ids = []
        item_ids = []
        labels = []
        matrix = np.zeros([num_users, num_items], dtype=np.float32)
        for uid, iid in likes.keys():
X
Xin Pan 已提交
177 178
            user_ids.append(uid)
            item_ids.append(iid)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            labels.append(1.0)
            matrix[uid, iid] = 1.0

            negative = 0
            while negative < 3:
                nuid = random.randint(0, num_users - 1)
                niid = random.randint(0, num_items - 1)
                if (nuid, niid) not in likes:
                    negative += 1
                    user_ids.append(nuid)
                    item_ids.append(niid)
                    labels.append(0.0)

        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
        return np.expand_dims(users_np, -1), \
            np.expand_dims(items_np, -1), \
            np.expand_dims(labels_np, -1), num_users, num_items, matrix
200

X
Xin Pan 已提交
201
    def test_deefcf(self):
X
Xin Pan 已提交
202
        seed = 90
203
        if self.data_path:
X
Xin Pan 已提交
204
            (users_np, items_np, labels_np, num_users, num_items,
205
             matrix) = self.load_data()
X
Xin Pan 已提交
206 207
        else:
            (users_np, items_np, labels_np, num_users, num_items,
208
             matrix) = self.get_data()
C
cnn 已提交
209
        paddle.seed(seed)
L
Leo Chen 已提交
210
        paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
211 212
        startup = fluid.Program()
        main = fluid.Program()
X
polish  
Xin Pan 已提交
213

X
Xin Pan 已提交
214 215
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
216 217
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
218 219
            labels = fluid.layers.data('labels', [1], dtype='float32')

220
            deepcf = DeepCF(num_users, num_items, matrix)
X
Xin Pan 已提交
221 222 223 224 225 226 227 228 229
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
                fluid.layers.log_loss(prediction, labels))
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
230
            for e in range(self.num_epoches):
X
Xin Pan 已提交
231
                sys.stderr.write('epoch %d\n' % e)
232 233 234
                for slice in range(0, self.batch_size * self.num_batches,
                                   self.batch_size):
                    if slice + self.batch_size >= users_np.shape[0]:
X
Xin Pan 已提交
235 236 237 238
                        break
                    static_loss = exe.run(
                        main,
                        feed={
239 240 241 242
                            users.name: users_np[slice:slice + self.batch_size],
                            items.name: items_np[slice:slice + self.batch_size],
                            labels.name:
                            labels_np[slice:slice + self.batch_size]
X
Xin Pan 已提交
243 244 245
                        },
                        fetch_list=[loss])[0]
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
246

L
lujun 已提交
247
        with fluid.dygraph.guard():
C
cnn 已提交
248
            paddle.seed(seed)
L
Leo Chen 已提交
249
            paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
250

251 252 253
            deepcf = DeepCF(num_users, num_items, matrix)
            adam = fluid.optimizer.AdamOptimizer(
                0.01, parameter_list=deepcf.parameters())
254
            for e in range(self.num_epoches):
X
Xin Pan 已提交
255
                sys.stderr.write('epoch %d\n' % e)
256 257 258
                for slice in range(0, self.batch_size * self.num_batches,
                                   self.batch_size):
                    if slice + self.batch_size >= users_np.shape[0]:
X
polish  
Xin Pan 已提交
259
                        break
X
Xin Pan 已提交
260
                    prediction = deepcf(
261 262
                        to_variable(users_np[slice:slice + self.batch_size]),
                        to_variable(items_np[slice:slice + self.batch_size]))
X
Xin Pan 已提交
263
                    loss = fluid.layers.reduce_sum(
264 265
                        fluid.layers.log_loss(
                            prediction,
266 267
                            to_variable(labels_np[slice:slice +
                                                  self.batch_size])))
L
lujun 已提交
268
                    loss.backward()
X
Xin Pan 已提交
269 270
                    adam.minimize(loss)
                    deepcf.clear_gradients()
271
                    dy_loss = loss.numpy()
X
polish  
Xin Pan 已提交
272
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
273

274
        with fluid.dygraph.guard():
C
cnn 已提交
275
            paddle.seed(seed)
L
Leo Chen 已提交
276
            paddle.framework.random._manual_program_seed(seed)
277

278 279 280
            deepcf2 = DeepCF(num_users, num_items, matrix)
            adam2 = fluid.optimizer.AdamOptimizer(
                0.01, parameter_list=deepcf2.parameters())
281
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
282
            for e in range(self.num_epoches):
283
                sys.stderr.write('epoch %d\n' % e)
284 285 286
                for slice in range(0, self.batch_size * self.num_batches,
                                   self.batch_size):
                    if slice + self.batch_size >= users_np.shape[0]:
287 288
                        break
                    prediction2 = deepcf2(
289 290
                        to_variable(users_np[slice:slice + self.batch_size]),
                        to_variable(items_np[slice:slice + self.batch_size]))
291
                    loss2 = fluid.layers.reduce_sum(
292 293
                        fluid.layers.log_loss(
                            prediction2,
294 295
                            to_variable(labels_np[slice:slice +
                                                  self.batch_size])))
296
                    loss2.backward()
297 298 299 300 301 302
                    adam2.minimize(loss2)
                    deepcf2.clear_gradients()
                    dy_loss2 = loss2.numpy()
                    sys.stderr.write('dynamic loss: %s %s\n' %
                                     (slice, dy_loss2))

303 304 305 306 307 308 309 310 311 312 313
        with fluid.dygraph.guard():
            with _test_eager_guard():
                paddle.seed(seed)
                paddle.framework.random._manual_program_seed(seed)
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed

                deepcf = DeepCF(num_users, num_items, matrix)
                adam = fluid.optimizer.AdamOptimizer(
                    0.01, parameter_list=deepcf.parameters())

314
                for e in range(self.num_epoches):
315
                    sys.stderr.write('epoch %d\n' % e)
316 317 318
                    for slice in range(0, self.batch_size * self.num_batches,
                                       self.batch_size):
                        if slice + self.batch_size >= users_np.shape[0]:
319 320
                            break
                        prediction = deepcf(
321 322 323 324
                            to_variable(users_np[slice:slice +
                                                 self.batch_size]),
                            to_variable(items_np[slice:slice +
                                                 self.batch_size]))
325
                        loss = fluid.layers.reduce_sum(
326 327 328
                            fluid.layers.log_loss(
                                prediction,
                                to_variable(labels_np[slice:slice +
329
                                                      self.batch_size])))
330 331 332 333 334 335 336
                        loss.backward()
                        adam.minimize(loss)
                        deepcf.clear_gradients()
                        eager_loss = loss.numpy()
                        sys.stderr.write('eager loss: %s %s\n' %
                                         (slice, eager_loss))

X
Xin Pan 已提交
337
        self.assertEqual(static_loss, dy_loss)
338
        self.assertEqual(static_loss, dy_loss2)
339
        self.assertEqual(static_loss, eager_loss)
X
Xin Pan 已提交
340 341 342


if __name__ == '__main__':
343
    paddle.enable_static()
X
Xin Pan 已提交
344
    unittest.main()