test_imperative_deepcf.py 11.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.dygraph import Linear
X
Xin Pan 已提交
27

X
polish  
Xin Pan 已提交
28
# Can use Amusic dataset as the DeepCF describes.
X
Xin Pan 已提交
29
DATA_PATH = os.environ.get('DATA_PATH', '')
X
polish  
Xin Pan 已提交
30 31 32

BATCH_SIZE = int(os.environ.get('BATCH_SIZE', 128))
NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
X
Xin Pan 已提交
33
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
X
Xin Pan 已提交
34 35


36
class DMF(fluid.Layer):
37 38 39 40
    def __init__(self):
        super(DMF, self).__init__()
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
41 42 43 44 45 46 47 48

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
49 50 51 52
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu')))
X
Xin Pan 已提交
53 54 55
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
56 57 58 59
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu')))
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


71
class MLP(fluid.Layer):
72 73 74 75
    def __init__(self):
        super(MLP, self).__init__()
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
76 77 78 79 80 81
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
82 83 84 85
                    Linear(
                        256 * 2 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu')))
X
Xin Pan 已提交
86 87 88 89 90 91 92 93 94 95 96

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1)
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


97
class DeepCF(fluid.Layer):
98 99
    def __init__(self, num_users, num_items, matrix):
        super(DeepCF, self).__init__()
X
Xin Pan 已提交
100 101 102
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
103 104 105
            attr=fluid.ParamAttr(trainable=False),
            shape=matrix.shape,
            dtype=matrix.dtype,
X
Xin Pan 已提交
106 107
            is_bias=False,
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
108
        self._rating_matrix.stop_gradient = True
X
Xin Pan 已提交
109

110 111 112
        self._mlp = MLP()
        self._dmf = DMF()
        self._match_fc = Linear(128, 1, act='sigmoid')
X
Xin Pan 已提交
113 114

    def forward(self, users, items):
X
Xin Pan 已提交
115 116 117 118 119 120 121
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
        users_emb = fluid.layers.gather(self._rating_matrix, users)
        items_emb = fluid.layers.gather(
            fluid.layers.transpose(self._rating_matrix, [1, 0]), items)
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive],
            axis=len(mlp_predictive.shape) - 1)
        prediction = self._match_fc(predictive)
        return prediction


def get_data():
    user_ids = []
    item_ids = []
    labels = []
X
Xin Pan 已提交
136 137
    NUM_USERS = 100
    NUM_ITEMS = 1000
X
polish  
Xin Pan 已提交
138 139
    matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

X
Xin Pan 已提交
140 141
    for uid in range(NUM_USERS):
        for iid in range(NUM_ITEMS):
X
Xin Pan 已提交
142
            label = float(random.randint(1, 6) == 1)
X
Xin Pan 已提交
143 144 145
            user_ids.append(uid)
            item_ids.append(iid)
            labels.append(label)
X
Xin Pan 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            matrix[uid, iid] = label
    indices = np.arange(len(user_ids))
    np.random.shuffle(indices)
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
           np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix


def load_data(DATA_PATH):
    sys.stderr.write('loading from %s\n' % DATA_PATH)
    likes = dict()
    num_users = -1
    num_items = -1
    with open(DATA_PATH, 'r') as f:
        for l in f.readlines():
            uid, iid, rating = [int(v) for v in l.split('\t')]
            num_users = max(num_users, uid + 1)
            num_items = max(num_items, iid + 1)
            if float(rating) > 0.0:
                likes[(uid, iid)] = 1.0

    user_ids = []
    item_ids = []
    labels = []
    matrix = np.zeros([num_users, num_items], dtype=np.float32)
    for uid, iid in likes.keys():
        user_ids.append(uid)
        item_ids.append(iid)
        labels.append(1.0)
        matrix[uid, iid] = 1.0

        negative = 0
        while negative < 3:
            nuid = random.randint(0, num_users - 1)
            niid = random.randint(0, num_items - 1)
            if (nuid, niid) not in likes:
                negative += 1
                user_ids.append(nuid)
                item_ids.append(niid)
                labels.append(0.0)

    indices = np.arange(len(user_ids))
X
Xin Pan 已提交
191
    np.random.shuffle(indices)
X
Xin Pan 已提交
192 193
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
X
Xin Pan 已提交
194 195 196
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
X
Xin Pan 已提交
197
           np.expand_dims(labels_np, -1), num_users, num_items, matrix
X
Xin Pan 已提交
198 199


L
lujun 已提交
200
class TestDygraphDeepCF(unittest.TestCase):
X
Xin Pan 已提交
201
    def test_deefcf(self):
X
Xin Pan 已提交
202
        seed = 90
X
Xin Pan 已提交
203 204 205 206 207 208
        if DATA_PATH:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = load_data(DATA_PATH)
        else:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = get_data()
X
Xin Pan 已提交
209 210 211 212 213

        startup = fluid.Program()
        startup.random_seed = seed
        main = fluid.Program()
        main.random_seed = seed
X
polish  
Xin Pan 已提交
214

X
Xin Pan 已提交
215 216
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
217 218
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
219 220
            labels = fluid.layers.data('labels', [1], dtype='float32')

221
            deepcf = DeepCF(num_users, num_items, matrix)
X
Xin Pan 已提交
222 223 224 225 226 227 228 229 230
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
                fluid.layers.log_loss(prediction, labels))
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
X
Xin Pan 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    static_loss = exe.run(
                        main,
                        feed={
                            users.name: users_np[slice:slice + BATCH_SIZE],
                            items.name: items_np[slice:slice + BATCH_SIZE],
                            labels.name: labels_np[slice:slice + BATCH_SIZE]
                        },
                        fetch_list=[loss])[0]
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
245

L
lujun 已提交
246
        with fluid.dygraph.guard():
X
Xin Pan 已提交
247 248 249
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

250 251 252
            deepcf = DeepCF(num_users, num_items, matrix)
            adam = fluid.optimizer.AdamOptimizer(
                0.01, parameter_list=deepcf.parameters())
X
Xin Pan 已提交
253 254 255
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
X
polish  
Xin Pan 已提交
256 257
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
X
Xin Pan 已提交
258 259 260 261 262 263 264
                    prediction = deepcf(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss = fluid.layers.reduce_sum(
                        fluid.layers.log_loss(prediction,
                                              to_variable(labels_np[
                                                  slice:slice + BATCH_SIZE])))
L
lujun 已提交
265
                    loss.backward()
X
Xin Pan 已提交
266 267
                    adam.minimize(loss)
                    deepcf.clear_gradients()
268
                    dy_loss = loss.numpy()
X
polish  
Xin Pan 已提交
269
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
270

271 272 273 274
        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

275 276 277
            deepcf2 = DeepCF(num_users, num_items, matrix)
            adam2 = fluid.optimizer.AdamOptimizer(
                0.01, parameter_list=deepcf2.parameters())
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    prediction2 = deepcf2(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss2 = fluid.layers.reduce_sum(
                        fluid.layers.log_loss(prediction2,
                                              to_variable(labels_np[
                                                  slice:slice + BATCH_SIZE])))
                    loss2.backward(backward_strategy)
                    adam2.minimize(loss2)
                    deepcf2.clear_gradients()
                    dy_loss2 = loss2.numpy()
                    sys.stderr.write('dynamic loss: %s %s\n' %
                                     (slice, dy_loss2))

X
Xin Pan 已提交
299
        self.assertEqual(static_loss, dy_loss)
300
        self.assertEqual(static_loss, dy_loss2)
X
Xin Pan 已提交
301 302 303 304


if __name__ == '__main__':
    unittest.main()