analysis_config.cc 42.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24
#include "paddle/fluid/platform/enforce.h"
25
#include "paddle/utils/string/split.h"
26

27 28 29 30
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

31
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
32 33 34
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

35
namespace paddle {
W
wanghuancoder 已提交
36 37
struct MkldnnQuantizerConfig;

38
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
39
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
40
extern const std::vector<std::string> kLiteSubgraphPasses;
41

42
PassStrategy *AnalysisConfig::pass_builder() const {
43 44 45 46
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
47 48
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
49 50
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
51 52 53
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
54 55 56 57 58 59 60 61 62 63 64 65
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

66 67 68
  return pass_builder_.get();
}

69
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
70
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
71 72

  Update();
73
}
74 75
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
76 77
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
78 79

  Update();
80
}
81 82
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
83 84
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
85 86

  Update();
87
}
88 89
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
90
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
91 92
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
93
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
94
  gpu_device_id_ = device_id;
95
#else
Y
Yan Chunwei 已提交
96
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
97 98
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
99 100 101

  Update();
}
102

103
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
104 105 106
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
107 108 109 110 111 112
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
113 114 115
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
116 117 118 119 120 121 122
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

123
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
124 125 126
  use_gpu_ = false;

  Update();
127 128
}

129 130 131 132 133 134
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
135 136 137 138
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
139 140
                               const std::string &precision,
                               bool adaptive_seqlen) {
141 142
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
143 144 145 146 147
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
148 149 150
  Update();
}

151
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
152 153
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
154 155 156 157 158 159
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
160 161 162 163 164 165 166 167 168 169 170
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
171

172 173 174 175 176 177 178 179 180 181 182 183 184
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
185 186
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
187 188
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
189 190 191
  enable_ir_optim_ = true;

  use_ipu_ = true;
192 193
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
194 195
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
196 197 198 199

  Update();
}

W
Wilber 已提交
200 201
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
202 203 204 205 206 207
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
208 209 210

  Update();
}
W
Wilber 已提交
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
void AnalysisConfig::SetIpuCustomInfo(
    const std::vector<std::vector<std::string>> &ipu_custom_ops_info,
    const std::map<std::string, bool> &ipu_custom_patterns) {
  ipu_custom_ops_info_ = ipu_custom_ops_info;
  for (auto iter = ipu_custom_patterns.begin();
       iter != ipu_custom_patterns.end();
       iter++) {
    if (iter->second == true) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "True"});
    } else if (iter->second == false) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "False"});
    }
  }

  Update();
}

void AnalysisConfig::LoadIpuConfig(const std::string &config_path) {
  std::ifstream fin(config_path, std::ios::in);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()),
      true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_path));
  std::string line;
  while (std::getline(fin, line)) {
    // remove all space
    line.erase(std::remove(line.begin(), line.end(), ' '), line.end());

    std::string key;
    std::string value;
    std::istringstream stream(line);
    // Split string to key and value based on the first `,`
    std::getline(stream, key, ',');
    std::getline(stream, value);

    auto string2bool = [](std::string s) {
      std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) {
        return ::tolower(c);
      });
      return s == "true" || s == "1";
    };

    // ipu_custom_ops_info:
    // [[paddle_op_name, popart_op_name, domain, version], [paddle_op_name,
    // popart_op_name, domain, version]...]
    // ipu_custom_patterns:
    // [[paddle_op_name, enable_pattern], [paddle_op_name, enable_pattern]...]
    auto string2vector = [](std::string s) {
      std::vector<std::vector<std::string>> custom_info;
      s.erase(0, 1);
      s.pop_back();

      std::string one;
      std::istringstream s_stream(s);
      while (std::getline(s_stream, one, ']')) {
        if (!one.empty()) {
          // remove `[`
          one.erase(0, 1);
          custom_info.push_back(paddle::string::Split(one, ','));
        }
      }
      return custom_info;
    };

    if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "invalid key {} in IPU config", key));
    }
    switch (ipu_config_mapper_.at(key)) {
      case ipu_config_code::ipu_device_num:
        ipu_device_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_micro_batch_size:
        ipu_micro_batch_size_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_pipelining:
        ipu_enable_pipelining_ = string2bool(value);
        break;
      case ipu_config_code::ipu_batches_per_step:
        ipu_batches_per_step_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_fp16:
        ipu_enable_fp16_ = string2bool(value);
        break;
      case ipu_config_code::ipu_replica_num:
        ipu_replica_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_available_memory_proportion:
        ipu_available_memory_proportion_ = std::stof(value);
        break;
      case ipu_config_code::ipu_enable_half_partial:
        ipu_enable_half_partial_ = string2bool(value);
        break;
      case ipu_config_code::ipu_custom_ops_info:
        ipu_custom_ops_info_ = string2vector(value);
        break;
      case ipu_config_code::ipu_custom_patterns:
        ipu_custom_patterns_ = string2vector(value);
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "invalid key {} in IPU config", key));
        break;
    }
  }

  Update();
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

353
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
354 355 356 357 358 359
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
360

361
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
362 363
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
364

365
  CP_MEMBER(use_fc_padding_);
366
  // GPU related.
367
  CP_MEMBER(use_gpu_);
368 369
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
370
  CP_MEMBER(use_cudnn_);
371
  CP_MEMBER(gpu_device_id_);
372
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
373

374 375 376
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
377
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
378
  // TensorRT related.
379 380 381 382
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
383
  CP_MEMBER(tensorrt_precision_mode_);
384
  CP_MEMBER(trt_disabled_ops_);
385 386
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
387
  CP_MEMBER(trt_use_static_engine_);
388
  CP_MEMBER(trt_use_calib_mode_);
389
  CP_MEMBER(trt_use_varseqlen_);
390
  CP_MEMBER(trt_with_interleaved_);
391 392
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
393 394 395 396
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
397
  CP_MEMBER(trt_use_inspector_);
398
  CP_MEMBER(trt_engine_memory_sharing_);
D
denglin-github 已提交
399 400 401
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
D
denglin-github 已提交
402 403 404 405 406 407 408
  CP_MEMBER(dlnne_max_batchsize_);
  CP_MEMBER(dlnne_use_static_batch_);
  CP_MEMBER(dlnne_weight_share_mode_);
  CP_MEMBER(dlnne_use_calib_mode_);
  CP_MEMBER(dlnne_precision_mode_);
  CP_MEMBER(dlnne_disable_nodes_by_outputs_);
  CP_MEMBER(dlnne_input_shape_dict_);
S
Sylwester Fraczek 已提交
409
  // MKLDNN related.
410 411
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
412
  CP_MEMBER(mkldnn_cache_capacity_);
413 414 415
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
416
  // Quantization related.
B
baoachun 已提交
417 418 419
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
420 421
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
422 423 424
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
425
  CP_MEMBER(disable_trt_plugin_fp16_);
426

石晓伟 已提交
427 428 429 430
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
431 432
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
433
  // XPU related.
434
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
435
  CP_MEMBER(xpu_device_id_);
436
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
437 438 439 440 441
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
442

W
Wilber 已提交
443 444 445
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
446
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
447

448 449 450
  // profile related.
  CP_MEMBER(with_profile_);

451 452 453
  // glog related.
  CP_MEMBER(with_glog_info_);

454 455 456 457 458 459 460 461 462 463
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

464 465
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
466 467 468
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
469
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
470 471
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
472 473 474 475
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
476 477
  CP_MEMBER(ipu_custom_ops_info_);
  CP_MEMBER(ipu_custom_patterns_);
J
jianghaicheng 已提交
478

479 480 481
  // fleet exe related
  CP_MEMBER(dist_config_);

482 483 484 485 486
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

487 488 489 490
  // JITLayer relate
  CP_MEMBER(apply_optim_);
  CP_MEMBER(skip_load_params_);

491
  if (use_gpu_) {
W
Wilber 已提交
492 493
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
494 495
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
496 497
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
498 499 500
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
501 502 503
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
504 505 506
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
507 508 509 510 511
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

512
#undef CP_MEMBER
Y
Yan Chunwei 已提交
513

W
Wilber 已提交
514 515 516 517 518
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
519
    pass_builder_->ClearPasses();
W
Wilber 已提交
520
    auto other_passes = other.pass_builder()->AllPasses();
521 522
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
523
    }
524
  }
D
denglin-github 已提交
525 526 527 528 529 530 531 532
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
533 534 535 536
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
537 538 539 540 541
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
542 543 544 545

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
546 547
}

548
void AnalysisConfig::EnableCUDNN() {
549
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
550 551 552 553 554 555 556 557 558
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

559
void AnalysisConfig::EnableMKLDNN() {
560 561 562 563 564 565
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
566 567

  Update();
568 569
}

570 571 572 573 574 575 576 577 578
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

579 580 581 582 583 584 585 586 587 588 589 590 591
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

592 593
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
594 595
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
596 597 598 599
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
600 601 602 603
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
604 605 606 607 608 609 610 611
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

641
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
642
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
643 644
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
645
  return mkldnn_quantizer_config_.get();
646 647
}

648
void AnalysisConfig::EnableTensorRtEngine(
649
    int64_t workspace_size,
W
Wilber 已提交
650 651 652 653
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
654
    bool use_calib_mode) {
655
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
656 657 658 659 660
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

661
  use_tensorrt_ = true;
662
#ifdef PADDLE_WITH_TENSORRT
663 664 665 666 667 668 669 670 671 672 673 674
  // https://forums.developer.nvidia.com/t/nvinfer1-createexecutioncontextwithoutdevicememory-returns-nullptr/111878/2
  // when trt version less than 7.2,
  // createExecutionContextWithoutDeviceMemory() has bug.
  // so, we cannot enable engine context memory sharing.
#if IS_TRT_VERSION_GE(7200)
  trt_engine_memory_sharing_ = true;
#else
  LOG(WARNING)
      << "TensorRT engine context memory sharing needs version 7.2 and after.";
  trt_engine_memory_sharing_ = false;
#endif
#endif
675 676
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
677
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
678
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
679
  trt_use_static_engine_ = use_static;
680
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
681

682
  Update();
Y
Yan Chunwei 已提交
683 684 685 686
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
687 688
}

D
denglin-github 已提交
689 690 691 692 693 694 695 696 697
void AnalysisConfig::EnableDlnne(
    int min_subgraph_size,
    int max_batch_size,
    bool use_static_batch,
    std::string weight_share_mode,
    std::unordered_set<std::string> disable_nodes_by_ouputs,
    std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict,
    bool use_calib_mode,
    AnalysisConfig::Precision precision_mode) {
D
denglin-github 已提交
698 699
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
D
denglin-github 已提交
700 701 702 703 704 705 706
  dlnne_max_batchsize_ = max_batch_size;
  dlnne_use_static_batch_ = use_static_batch;
  dlnne_weight_share_mode_ = weight_share_mode;
  dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs;
  dlnne_input_shape_dict_ = dlnne_input_shape_dict;
  dlnne_use_calib_mode_ = use_calib_mode;
  dlnne_precision_mode_ = precision_mode;
D
denglin-github 已提交
707 708 709
  Update();
}

710 711 712 713 714 715 716 717 718 719 720
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

721 722 723 724 725
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

726 727
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

728 729 730 731 732
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

733
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
734

Y
Yan Chunwei 已提交
735
// TODO(Superjomn) refactor this, buggy.
736
void AnalysisConfig::Update() {
737
  auto &&info = SerializeInfoCache();
738 739
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
740
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
741 742
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
743
      ((use_npu() ^ pass_builder_->use_npu())) ||
744 745
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
746 747 748 749 750 751 752
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
753 754 755
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
756 757
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
758 759
          use_gpu(),
          false,
760 761 762
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
763 764
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
765 766
          use_gpu(),
          false,
W
Wilber 已提交
767 768 769
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
770 771
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
772 773
          use_gpu(),
          false,
774 775 776
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
777 778 779
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
780

781
  } else {
Y
Yan Chunwei 已提交
782 783 784
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
785 786 787 788
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
789 790
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
791 792
          use_gpu(),
          false,
793 794 795 796
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
797 798
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
799 800
          use_gpu(),
          false,
W
Wilber 已提交
801 802 803 804
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
805 806
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
807 808
          use_gpu(),
          false,
809 810 811 812
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
813 814 815 816
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
817 818 819
  }

  if (use_tensorrt_) {
820 821
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
822
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
823
          (pass == "conv_bn_fuse_pass")) {
824 825
        continue;
      }
826
      pass_builder()->AppendPass(pass);
827 828
    }
  }
829

D
denglin-github 已提交
830 831 832 833 834 835 836
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

837
  if (use_gpu() && use_cudnn_) {
838
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
839 840 841 842 843 844 845 846
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

847
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
848
#ifdef PADDLE_WITH_MKLDNN
849 850 851
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
852 853
    } else {
      pass_builder()->EnableMKLDNN();
854 855 856 857
    }
#endif
  }

858 859 860 861 862
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
863 864
    }
#ifdef PADDLE_WITH_MKLDNN
865
    pass_builder()->EnableMkldnnQuantizer();
866 867 868
#endif
  }

869 870 871 872 873 874
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

889
#ifdef PADDLE_WITH_MKLDNN
890 891
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
892
#else
Y
Yan Chunwei 已提交
893
  if (enable_memory_optim_) {
894 895
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
896 897
  }

石晓伟 已提交
898 899 900 901 902 903 904
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
905 906
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
907 908 909 910 911 912
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

913
  if (use_xpu_) {
914
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
915 916
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
917 918 919
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
920 921 922 923 924
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
925 926
  }

W
Wilber 已提交
927
  if (use_npu_) {
928
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
929 930
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
931 932 933 934 935 936 937 938 939
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
940 941 942 943 944 945 946
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
947 948 949 950 951 952 953
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
954 955 956 957 958
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

959
std::string AnalysisConfig::SerializeInfoCache() {
960
  std::stringstream ss;
Y
Yan Chunwei 已提交
961 962 963 964
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

965
  ss << use_gpu_;
966 967
  ss << use_external_stream_;
  ss << exec_stream_;
968
  ss << use_fc_padding_;
969 970
  ss << gpu_device_id_;
  ss << xpu_device_id_;
971 972 973 974 975
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
976 977
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
978 979 980
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

981 982 983
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

984 985 986
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
987
  ss << enable_memory_optim_;
988
  ss << trt_engine_memory_sharing_;
989 990

  ss << use_mkldnn_;
991
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
992 993 994
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

995
  ss << use_mkldnn_quantizer_;
996
  ss << use_mkldnn_bfloat16_;
997
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
998 999 1000
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
1001
  ss << ";";
Y
Yan Chunwei 已提交
1002 1003
  ss << model_from_memory_;

1004 1005
  ss << with_profile_;

1006 1007
  ss << with_glog_info_;

1008 1009 1010 1011
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
1012 1013
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
1014 1015

  ss << use_lite_;
1016 1017
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
1018 1019 1020 1021 1022
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
1023

W
Wilber 已提交
1024 1025 1026
  ss << use_npu_;
  ss << npu_device_id_;

1027 1028
  ss << thread_local_stream_;

J
jianghaicheng 已提交
1029 1030
  ss << use_ipu_;
  ss << ipu_device_num_;
1031
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
1032 1033
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
1034 1035 1036 1037
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
1038 1039 1040 1041 1042 1043
  for (auto custom_op : ipu_custom_ops_info_)
    for (auto attr : custom_op) ss << attr;
  ss << ";";
  for (auto pattern : ipu_custom_patterns_)
    for (auto attr : pattern) ss << attr;
  ss << ";";
1044
  for (auto &op : mixed_black_list_) ss << op.c_str();
1045 1046 1047
  return ss.str();
}

1048
void AnalysisConfig::SetCpuMathLibraryNumThreads(
1049 1050
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
1051 1052

  Update();
1053 1054
}

1055
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
1056
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1057 1058
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
1059
  size_t gpu_total, gpu_available;
1060
  platform::SetDeviceId(gpu_device_id_);
1061 1062
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
1063 1064
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
1065 1066 1067 1068
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
1069 1070 1071 1072
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
1073 1074
}

1075 1076
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
1077 1078 1079
  Update();
}

1080
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
1081 1082 1083
  return enable_memory_optim_;
}

1084 1085 1086 1087
bool AnalysisConfig::trt_engine_memory_sharing() const {
  return trt_engine_memory_sharing_;
}

1088 1089 1090 1091
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
1092 1093
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
1094
  model_from_memory_ = true;
T
Tao Luo 已提交
1095 1096
}

1097
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
1098 1099 1100 1101 1102
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
1103
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
1104 1105 1106 1107 1108
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
1109 1110 1111 1112
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
1113 1114 1115 1116 1117 1118

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

1119 1120 1121 1122 1123
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
1124
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
1125 1126
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
1127 1128 1129 1130 1131 1132
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
1133
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
1134 1135 1136
  Update();
}

1137 1138 1139 1140 1141 1142 1143
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

1144 1145
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
1157

1158 1159 1160 1161 1162 1163 1164 1165
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
1166
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1177 1178
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1179 1180 1181 1182 1183
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1227 1228 1229
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1230

1231 1232
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1233 1234
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1235 1236 1237
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1238 1239 1240 1241
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1242 1243
      os.InsertRow({"trt_engine_memory_sharing",
                    trt_engine_memory_sharing_ ? "true" : "false"});
1244
#endif
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1268 1269
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1270 1271 1272 1273

  return os.PrintTable();
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1295 1296
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1297 1298
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1299 1300
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1301 1302 1303
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1304 1305 1306
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1332 1333 1334 1335 1336 1337 1338
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1339 1340
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1341 1342 1343 1344 1345 1346
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

1347
const std::string &AnalysisConfig::shape_range_info_path() const {
1348 1349 1350
  return shape_range_info_path_;
}

1351
bool AnalysisConfig::shape_range_info_collected() const {
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

1362
bool AnalysisConfig::tuned_tensorrt_dynamic_shape() const {
1363 1364 1365
  return trt_tuned_dynamic_shape_;
}

1366
bool AnalysisConfig::trt_allow_build_at_runtime() const {
1367 1368
  return trt_allow_build_at_runtime_;
}
1369 1370 1371 1372 1373 1374

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1375
}  // namespace paddle