analysis_config.cc 36.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24 25
#include "paddle/fluid/platform/enforce.h"

26 27 28 29
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

30
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
31 32 33
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

34
namespace paddle {
W
wanghuancoder 已提交
35 36
struct MkldnnQuantizerConfig;

37
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
38
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
39
extern const std::vector<std::string> kLiteSubgraphPasses;
40

41
PassStrategy *AnalysisConfig::pass_builder() const {
42 43 44 45
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
46 47
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
48 49
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
50 51 52
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
53 54 55 56 57 58 59 60 61 62 63 64
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

65 66 67
  return pass_builder_.get();
}

68
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
69
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
70 71

  Update();
72
}
73 74
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
75 76
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
77 78

  Update();
79
}
80 81
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
82 83
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
84 85

  Update();
86
}
87 88
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
92
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
93
  gpu_device_id_ = device_id;
94
#else
Y
Yan Chunwei 已提交
95
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
96 97
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
98 99 100

  Update();
}
101

102
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
103 104 105
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
106 107 108 109 110 111
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
112 113 114
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
115 116 117 118 119 120 121
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

122
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
123 124 125
  use_gpu_ = false;

  Update();
126 127
}

128 129 130 131 132 133
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
134 135 136 137
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
138 139
                               const std::string &precision,
                               bool adaptive_seqlen) {
140 141
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
142 143 144 145 146
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
147 148 149
  Update();
}

150
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
151 152
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
153 154 155 156 157 158
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
159 160 161 162 163 164 165 166 167 168 169
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
170

171 172 173 174 175 176 177 178 179 180 181 182 183
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
184 185
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
186 187
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
188 189 190
  enable_ir_optim_ = true;

  use_ipu_ = true;
191 192
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
193 194
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
195 196 197 198

  Update();
}

W
Wilber 已提交
199 200
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
201 202 203 204 205 206
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
207 208 209

  Update();
}
W
Wilber 已提交
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

238
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
239 240 241 242 243 244
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
245

246
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
247 248
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
249

250
  CP_MEMBER(use_fc_padding_);
251
  // GPU related.
252
  CP_MEMBER(use_gpu_);
253 254
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
255
  CP_MEMBER(use_cudnn_);
256
  CP_MEMBER(gpu_device_id_);
257
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
258 259

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
260
  // TensorRT related.
261 262 263 264
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
265
  CP_MEMBER(tensorrt_precision_mode_);
266
  CP_MEMBER(trt_disabled_ops_);
267 268
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
269
  CP_MEMBER(trt_use_static_engine_);
270
  CP_MEMBER(trt_use_calib_mode_);
271
  CP_MEMBER(trt_use_varseqlen_);
272
  CP_MEMBER(trt_with_interleaved_);
273 274
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
275 276 277 278
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
279
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
280 281 282
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
283
  // MKLDNN related.
284 285
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
286
  CP_MEMBER(mkldnn_cache_capacity_);
287 288 289
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
290
  // Quantization related.
B
baoachun 已提交
291 292 293
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
294 295
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
296 297 298
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
299
  CP_MEMBER(disable_trt_plugin_fp16_);
300

石晓伟 已提交
301 302 303 304
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
305 306
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
307
  // XPU related.
308
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
309
  CP_MEMBER(xpu_device_id_);
310
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
311 312 313 314 315
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
316

W
Wilber 已提交
317 318 319
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
320
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
321

322 323 324
  // profile related.
  CP_MEMBER(with_profile_);

325 326 327
  // glog related.
  CP_MEMBER(with_glog_info_);

328 329 330 331 332 333 334 335 336 337
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

338 339
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
340 341 342
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
343
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
344 345
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
346 347 348 349
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
J
jianghaicheng 已提交
350

351 352 353
  // fleet exe related
  CP_MEMBER(dist_config_);

354 355 356 357 358
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

359
  if (use_gpu_) {
W
Wilber 已提交
360 361
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
362 363
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
364 365
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
366 367 368
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
369 370 371
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
372 373 374
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
375 376 377 378 379
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

380
#undef CP_MEMBER
Y
Yan Chunwei 已提交
381

W
Wilber 已提交
382 383 384 385 386
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
387
    pass_builder_->ClearPasses();
W
Wilber 已提交
388
    auto other_passes = other.pass_builder()->AllPasses();
389 390
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
391
    }
392
  }
D
denglin-github 已提交
393 394 395 396 397 398 399 400
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
401 402 403 404
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
405 406 407 408 409
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
410 411
}

412
void AnalysisConfig::EnableCUDNN() {
413
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
414 415 416 417 418 419 420 421 422
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

423
void AnalysisConfig::EnableMKLDNN() {
424 425 426 427 428 429
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
430 431

  Update();
432 433
}

434 435 436 437 438 439 440 441 442
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

443 444 445 446 447 448 449 450 451 452 453 454 455
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

456 457
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
458 459
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
460 461 462 463
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
464 465 466 467
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
468 469 470 471 472 473 474 475
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

505
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
506
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
507 508
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
509
  return mkldnn_quantizer_config_.get();
510 511
}

512
void AnalysisConfig::EnableTensorRtEngine(
W
Wilber 已提交
513 514 515 516 517
    int workspace_size,
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
518
    bool use_calib_mode) {
519
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
520 521 522 523 524
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

525 526 527
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
528
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
529
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
530
  trt_use_static_engine_ = use_static;
531
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
532

533
  Update();
Y
Yan Chunwei 已提交
534 535 536 537
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
538 539
}

D
denglin-github 已提交
540 541 542 543 544 545
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

546 547 548 549 550 551 552 553 554 555 556
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

557 558 559 560 561
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

562 563
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

564 565 566 567 568
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

569
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
570

Y
Yan Chunwei 已提交
571
// TODO(Superjomn) refactor this, buggy.
572
void AnalysisConfig::Update() {
573 574 575
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
576
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
577 578
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
579
      ((use_npu() ^ pass_builder_->use_npu())) ||
580 581
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
582 583 584 585 586 587 588
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
589 590 591
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
592 593
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
594 595
          use_gpu(),
          false,
596 597 598
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
599 600
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
601 602
          use_gpu(),
          false,
W
Wilber 已提交
603 604 605
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
606 607
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
608 609
          use_gpu(),
          false,
610 611 612
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
613 614 615
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
616

617
  } else {
Y
Yan Chunwei 已提交
618 619 620
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
621 622 623 624
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
625 626
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
627 628
          use_gpu(),
          false,
629 630 631 632
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
633 634
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
635 636
          use_gpu(),
          false,
W
Wilber 已提交
637 638 639 640
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
641 642
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
643 644
          use_gpu(),
          false,
645 646 647 648
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
649 650 651 652
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
653 654 655
  }

  if (use_tensorrt_) {
656 657
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
658
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
659
          (pass == "conv_bn_fuse_pass")) {
660 661
        continue;
      }
662
      pass_builder()->AppendPass(pass);
663 664
    }
  }
665

D
denglin-github 已提交
666 667 668 669 670 671 672
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

673
  if (use_gpu() && use_cudnn_) {
674
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
675 676 677 678 679 680 681 682
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

683
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
684
#ifdef PADDLE_WITH_MKLDNN
685 686 687
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
688 689
    } else {
      pass_builder()->EnableMKLDNN();
690 691 692 693
    }
#endif
  }

694 695 696 697 698
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
699 700
    }
#ifdef PADDLE_WITH_MKLDNN
701
    pass_builder()->EnableMkldnnQuantizer();
702 703 704
#endif
  }

705 706 707 708 709 710
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

725
#ifdef PADDLE_WITH_MKLDNN
726 727
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
728
#else
Y
Yan Chunwei 已提交
729
  if (enable_memory_optim_) {
730 731
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
732 733
  }

石晓伟 已提交
734 735 736 737 738 739 740
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
741 742
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
743 744 745 746 747 748
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

749
  if (use_xpu_) {
750
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
751 752
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
753 754 755
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
756 757 758 759 760
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
761 762
  }

W
Wilber 已提交
763
  if (use_npu_) {
764
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
765 766
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
767 768 769 770 771 772 773 774 775
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
776 777 778 779 780 781 782
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
783 784 785 786 787 788 789
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
790 791 792 793 794
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

795
std::string AnalysisConfig::SerializeInfoCache() {
796
  std::stringstream ss;
Y
Yan Chunwei 已提交
797 798 799 800
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

801
  ss << use_gpu_;
802 803
  ss << use_external_stream_;
  ss << exec_stream_;
804
  ss << use_fc_padding_;
805 806
  ss << gpu_device_id_;
  ss << xpu_device_id_;
807 808 809 810 811
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
812 813
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
814 815 816
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

817 818 819
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

820 821 822
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
823
  ss << enable_memory_optim_;
824 825

  ss << use_mkldnn_;
826
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
827 828 829
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

830
  ss << use_mkldnn_quantizer_;
831
  ss << use_mkldnn_bfloat16_;
832
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
833 834 835
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
836
  ss << ";";
Y
Yan Chunwei 已提交
837 838
  ss << model_from_memory_;

839 840
  ss << with_profile_;

841 842
  ss << with_glog_info_;

843 844 845 846
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
847 848
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
849 850

  ss << use_lite_;
851 852
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
853 854 855 856 857
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
858

W
Wilber 已提交
859 860 861
  ss << use_npu_;
  ss << npu_device_id_;

862 863
  ss << thread_local_stream_;

J
jianghaicheng 已提交
864 865
  ss << use_ipu_;
  ss << ipu_device_num_;
866
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
867 868
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
869 870 871 872
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
J
jianghaicheng 已提交
873

874 875 876
  return ss.str();
}

877
void AnalysisConfig::SetCpuMathLibraryNumThreads(
878 879
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
880 881

  Update();
882 883
}

884
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
885
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
886 887
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
888
  size_t gpu_total, gpu_available;
889
  platform::SetDeviceId(gpu_device_id_);
890 891
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
892 893
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
894 895 896 897
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
898 899 900 901
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
902 903
}

904 905
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
906 907 908
  Update();
}

909
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
910 911 912
  return enable_memory_optim_;
}

913 914 915 916
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
917 918
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
919
  model_from_memory_ = true;
T
Tao Luo 已提交
920 921
}

922
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
923 924 925 926 927
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
928
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
929 930 931 932 933
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
934 935 936 937
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
938 939 940 941 942 943

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

944 945 946 947 948
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
949
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
950 951
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
952 953 954 955 956 957
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
958
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
959 960 961
  Update();
}

962 963 964 965 966 967 968
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

969 970
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
990
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
991 992 993 994 995 996 997 998 999 1000
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1001 1002
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1003 1004 1005 1006 1007
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1051 1052 1053
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1054

1055 1056
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1057 1058
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1059 1060 1061
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1062 1063 1064 1065
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1066
#endif
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1090 1091
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1092 1093 1094 1095

  return os.PrintTable();
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1117 1118
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1119 1120
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1121 1122
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1123 1124 1125
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1126 1127 1128
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1154 1155 1156 1157 1158 1159 1160
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1161 1162
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
1191
}  // namespace paddle