analysis_config.cc 36.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24 25
#include "paddle/fluid/platform/enforce.h"

26 27 28 29
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

30
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
31 32 33
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

34
namespace paddle {
W
wanghuancoder 已提交
35 36
struct MkldnnQuantizerConfig;

37
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
38
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
39
extern const std::vector<std::string> kLiteSubgraphPasses;
40

41
PassStrategy *AnalysisConfig::pass_builder() const {
42 43 44 45
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
46 47
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
48 49
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
50 51 52
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
53 54 55 56 57 58 59 60 61 62 63 64
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

65 66 67
  return pass_builder_.get();
}

68
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
69
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
70 71

  Update();
72
}
73 74
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
75 76
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
77 78

  Update();
79
}
80 81
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
82 83
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
84 85

  Update();
86
}
87 88
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
92
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
93
  gpu_device_id_ = device_id;
94
#else
Y
Yan Chunwei 已提交
95
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
96 97
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
98 99 100

  Update();
}
101

102
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
103 104 105
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
106 107 108 109 110 111
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
112 113 114
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
115 116 117 118 119 120 121
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

122
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
123 124 125
  use_gpu_ = false;

  Update();
126 127
}

128 129 130 131 132 133
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
134 135 136 137
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
138 139
                               const std::string &precision,
                               bool adaptive_seqlen) {
140 141
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
142 143 144 145 146
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
147 148 149
  Update();
}

150
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
151 152
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
153 154 155 156 157 158
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
159 160 161 162 163 164 165 166 167 168 169
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
170

171 172 173 174 175 176 177 178 179 180 181 182 183
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
184 185
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
186 187
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
188 189 190
  enable_ir_optim_ = true;

  use_ipu_ = true;
191 192
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
193 194
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
195 196 197 198

  Update();
}

W
Wilber 已提交
199 200
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
201 202 203 204 205 206
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
207 208 209

  Update();
}
W
Wilber 已提交
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

238
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
239 240 241 242 243 244
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
245

246
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
247 248
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
249

250
  CP_MEMBER(use_fc_padding_);
251
  // GPU related.
252
  CP_MEMBER(use_gpu_);
253 254
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
255
  CP_MEMBER(use_cudnn_);
256
  CP_MEMBER(gpu_device_id_);
257
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
258

259 260 261
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
262
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
263
  // TensorRT related.
264 265 266 267
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
268
  CP_MEMBER(tensorrt_precision_mode_);
269
  CP_MEMBER(trt_disabled_ops_);
270 271
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
272
  CP_MEMBER(trt_use_static_engine_);
273
  CP_MEMBER(trt_use_calib_mode_);
274
  CP_MEMBER(trt_use_varseqlen_);
275
  CP_MEMBER(trt_with_interleaved_);
276 277
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
278 279 280 281
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
282
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
283 284 285
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
286
  // MKLDNN related.
287 288
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
289
  CP_MEMBER(mkldnn_cache_capacity_);
290 291 292
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
293
  // Quantization related.
B
baoachun 已提交
294 295 296
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
297 298
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
299 300 301
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
302
  CP_MEMBER(disable_trt_plugin_fp16_);
303

石晓伟 已提交
304 305 306 307
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
308 309
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
310
  // XPU related.
311
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
312
  CP_MEMBER(xpu_device_id_);
313
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
314 315 316 317 318
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
319

W
Wilber 已提交
320 321 322
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
323
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
324

325 326 327
  // profile related.
  CP_MEMBER(with_profile_);

328 329 330
  // glog related.
  CP_MEMBER(with_glog_info_);

331 332 333 334 335 336 337 338 339 340
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

341 342
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
343 344 345
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
346
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
347 348
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
349 350 351 352
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
J
jianghaicheng 已提交
353

354 355 356
  // fleet exe related
  CP_MEMBER(dist_config_);

357 358 359 360 361
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

362
  if (use_gpu_) {
W
Wilber 已提交
363 364
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
365 366
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
367 368
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
369 370 371
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
372 373 374
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
375 376 377
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
378 379 380 381 382
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

383
#undef CP_MEMBER
Y
Yan Chunwei 已提交
384

W
Wilber 已提交
385 386 387 388 389
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
390
    pass_builder_->ClearPasses();
W
Wilber 已提交
391
    auto other_passes = other.pass_builder()->AllPasses();
392 393
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
394
    }
395
  }
D
denglin-github 已提交
396 397 398 399 400 401 402 403
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
404 405 406 407
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
408 409 410 411 412
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
413 414
}

415
void AnalysisConfig::EnableCUDNN() {
416
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
417 418 419 420 421 422 423 424 425
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

426
void AnalysisConfig::EnableMKLDNN() {
427 428 429 430 431 432
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
433 434

  Update();
435 436
}

437 438 439 440 441 442 443 444 445
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

446 447 448 449 450 451 452 453 454 455 456 457 458
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

459 460
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
461 462
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
463 464 465 466
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
467 468 469 470
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
471 472 473 474 475 476 477 478
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

508
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
509
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
510 511
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
512
  return mkldnn_quantizer_config_.get();
513 514
}

515
void AnalysisConfig::EnableTensorRtEngine(
W
Wilber 已提交
516 517 518 519 520
    int workspace_size,
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
521
    bool use_calib_mode) {
522
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
523 524 525 526 527
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

528 529 530
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
531
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
532
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
533
  trt_use_static_engine_ = use_static;
534
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
535

536
  Update();
Y
Yan Chunwei 已提交
537 538 539 540
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
541 542
}

D
denglin-github 已提交
543 544 545 546 547 548
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

549 550 551 552 553 554 555 556 557 558 559
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

560 561 562 563 564
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

565 566
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

567 568 569 570 571
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

572
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
573

Y
Yan Chunwei 已提交
574
// TODO(Superjomn) refactor this, buggy.
575
void AnalysisConfig::Update() {
576 577 578
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
579
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
580 581
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
582
      ((use_npu() ^ pass_builder_->use_npu())) ||
583 584
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
585 586 587 588 589 590 591
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
592 593 594
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
595 596
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
597 598
          use_gpu(),
          false,
599 600 601
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
602 603
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
604 605
          use_gpu(),
          false,
W
Wilber 已提交
606 607 608
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
609 610
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
611 612
          use_gpu(),
          false,
613 614 615
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
616 617 618
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
619

620
  } else {
Y
Yan Chunwei 已提交
621 622 623
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
624 625 626 627
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
628 629
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
630 631
          use_gpu(),
          false,
632 633 634 635
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
636 637
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
638 639
          use_gpu(),
          false,
W
Wilber 已提交
640 641 642 643
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
644 645
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
646 647
          use_gpu(),
          false,
648 649 650 651
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
652 653 654 655
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
656 657 658
  }

  if (use_tensorrt_) {
659 660
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
661
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
662
          (pass == "conv_bn_fuse_pass")) {
663 664
        continue;
      }
665
      pass_builder()->AppendPass(pass);
666 667
    }
  }
668

D
denglin-github 已提交
669 670 671 672 673 674 675
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

676
  if (use_gpu() && use_cudnn_) {
677
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
678 679 680 681 682 683 684 685
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

686
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
687
#ifdef PADDLE_WITH_MKLDNN
688 689 690
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
691 692
    } else {
      pass_builder()->EnableMKLDNN();
693 694 695 696
    }
#endif
  }

697 698 699 700 701
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
702 703
    }
#ifdef PADDLE_WITH_MKLDNN
704
    pass_builder()->EnableMkldnnQuantizer();
705 706 707
#endif
  }

708 709 710 711 712 713
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

728
#ifdef PADDLE_WITH_MKLDNN
729 730
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
731
#else
Y
Yan Chunwei 已提交
732
  if (enable_memory_optim_) {
733 734
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
735 736
  }

石晓伟 已提交
737 738 739 740 741 742 743
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
744 745
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
746 747 748 749 750 751
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

752
  if (use_xpu_) {
753
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
754 755
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
756 757 758
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
759 760 761 762 763
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
764 765
  }

W
Wilber 已提交
766
  if (use_npu_) {
767
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
768 769
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
770 771 772 773 774 775 776 777 778
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
779 780 781 782 783 784 785
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
786 787 788 789 790 791 792
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
793 794 795 796 797
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

798
std::string AnalysisConfig::SerializeInfoCache() {
799
  std::stringstream ss;
Y
Yan Chunwei 已提交
800 801 802 803
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

804
  ss << use_gpu_;
805 806
  ss << use_external_stream_;
  ss << exec_stream_;
807
  ss << use_fc_padding_;
808 809
  ss << gpu_device_id_;
  ss << xpu_device_id_;
810 811 812 813 814
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
815 816
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
817 818 819
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

820 821 822
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

823 824 825
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
826
  ss << enable_memory_optim_;
827 828

  ss << use_mkldnn_;
829
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
830 831 832
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

833
  ss << use_mkldnn_quantizer_;
834
  ss << use_mkldnn_bfloat16_;
835
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
836 837 838
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
839
  ss << ";";
Y
Yan Chunwei 已提交
840 841
  ss << model_from_memory_;

842 843
  ss << with_profile_;

844 845
  ss << with_glog_info_;

846 847 848 849
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
850 851
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
852 853

  ss << use_lite_;
854 855
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
856 857 858 859 860
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
861

W
Wilber 已提交
862 863 864
  ss << use_npu_;
  ss << npu_device_id_;

865 866
  ss << thread_local_stream_;

J
jianghaicheng 已提交
867 868
  ss << use_ipu_;
  ss << ipu_device_num_;
869
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
870 871
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
872 873 874 875
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
J
jianghaicheng 已提交
876

877
  for (auto &op : mixed_black_list_) ss << op.c_str();
878 879 880
  return ss.str();
}

881
void AnalysisConfig::SetCpuMathLibraryNumThreads(
882 883
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
884 885

  Update();
886 887
}

888
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
889
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
890 891
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
892
  size_t gpu_total, gpu_available;
893
  platform::SetDeviceId(gpu_device_id_);
894 895
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
896 897
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
898 899 900 901
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
902 903 904 905
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
906 907
}

908 909
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
910 911 912
  Update();
}

913
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
914 915 916
  return enable_memory_optim_;
}

917 918 919 920
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
921 922
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
923
  model_from_memory_ = true;
T
Tao Luo 已提交
924 925
}

926
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
927 928 929 930 931
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
932
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
933 934 935 936 937
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
938 939 940 941
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
942 943 944 945 946 947

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

948 949 950 951 952
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
953
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
954 955
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
956 957 958 959 960 961
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
962
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
963 964 965
  Update();
}

966 967 968 969 970 971 972
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

973 974
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
994
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
995 996 997 998 999 1000 1001 1002 1003 1004
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1005 1006
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1007 1008 1009 1010 1011
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1055 1056 1057
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1058

1059 1060
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1061 1062
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1063 1064 1065
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1066 1067 1068 1069
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1070
#endif
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1094 1095
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1096 1097 1098 1099

  return os.PrintTable();
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1121 1122
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1123 1124
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1125 1126
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1127 1128 1129
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1130 1131 1132
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1158 1159 1160 1161 1162 1163 1164
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1165 1166
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
1195 1196 1197 1198 1199 1200

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1201
}  // namespace paddle