analysis_config.cc 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
17
#include "paddle/fluid/platform/cpu_info.h"
18
#include "paddle/fluid/platform/enforce.h"
19
#include "paddle/fluid/platform/gpu_info.h"
20

21 22 23 24
#ifdef PADDLE_WITH_CUDA
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

25
namespace paddle {
W
wanghuancoder 已提交
26 27
struct MkldnnQuantizerConfig;

28
extern const std::vector<std::string> kTRTSubgraphPasses;
石晓伟 已提交
29
extern const std::vector<std::string> kLiteSubgraphPasses;
30

31
PassStrategy *AnalysisConfig::pass_builder() const {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

48 49 50
  return pass_builder_.get();
}

51
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
52
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
53 54

  Update();
55
}
56 57
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
58 59
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
60 61

  Update();
62
}
63 64
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
65 66
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
67 68

  Update();
69
}
70 71
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
72 73 74
#ifdef PADDLE_WITH_CUDA
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
75
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
76 77
  device_id_ = device_id;
#else
Y
Yan Chunwei 已提交
78
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
79 80
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
81 82 83

  Update();
}
84
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
85 86 87
  use_gpu_ = false;

  Update();
88 89
}

90 91 92 93 94 95
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

96 97 98 99 100 101
void AnalysisConfig::EnableXpu(int l3_workspace_size) {
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
  Update();
}

102
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
103 104 105 106 107 108
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
109

110
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
111 112
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
113

114
  CP_MEMBER(use_fc_padding_);
115
  // GPU related.
116
  CP_MEMBER(use_gpu_);
117
  CP_MEMBER(use_cudnn_);
118 119
  CP_MEMBER(device_id_);
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
120 121

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
122
  // TensorRT related.
123 124 125 126
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
127
  CP_MEMBER(tensorrt_precision_mode_);
128
  CP_MEMBER(trt_disabled_ops_);
N
nhzlx 已提交
129
  CP_MEMBER(trt_use_static_engine_);
130
  CP_MEMBER(trt_use_calib_mode_);
131
  CP_MEMBER(trt_use_oss_);
S
Sylwester Fraczek 已提交
132
  // MKLDNN related.
133 134
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
135
  CP_MEMBER(mkldnn_cache_capacity_);
136 137 138
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
139 140 141
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
142 143 144
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
145
  CP_MEMBER(disable_trt_plugin_fp16_);
146

石晓伟 已提交
147 148 149 150
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
151 152 153 154
  CP_MEMBER(lite_zero_copy_);

  CP_MEMBER(use_xpu_);
  CP_MEMBER(xpu_l3_workspace_size_);
石晓伟 已提交
155

156 157 158
  // profile related.
  CP_MEMBER(with_profile_);

159 160 161
  // glog related.
  CP_MEMBER(with_glog_info_);

162 163 164 165 166 167 168 169 170 171
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

172 173
  CP_MEMBER(thread_local_stream_);

174
  if (use_gpu_) {
175 176 177 178 179 180 181
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

182
#undef CP_MEMBER
Y
Yan Chunwei 已提交
183

W
Wilber 已提交
184 185 186 187 188 189 190
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
    auto all_passes = kTRTSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
W
Wilber 已提交
191 192 193 194
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
W
Wilber 已提交
195 196 197 198 199 200 201
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
202
  }
203 204
}

205 206 207 208 209 210 211 212 213 214 215
void AnalysisConfig::EnableCUDNN() {
#ifdef PADDLE_WITH_CUDA
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

216
void AnalysisConfig::EnableMKLDNN() {
217 218 219 220 221 222
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
223 224

  Update();
225 226
}

227 228 229 230 231 232 233 234 235
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

236 237 238 239 240 241 242 243 244 245 246 247 248
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

249 250
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
251 252 253 254 255 256
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
257 258 259 260 261 262 263 264
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

265
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
266
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
267 268
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
269
  return mkldnn_quantizer_config_.get();
270 271
}

272
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
273
    int workspace_size, int max_batch_size, int min_subgraph_size,
274
    AnalysisConfig::Precision precision_mode, bool use_static,
275
    bool use_calib_mode) {
Y
Yan Chunwei 已提交
276 277 278 279 280 281
#ifdef PADDLE_WITH_CUDA
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

282 283 284
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
285
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
286
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
287
  trt_use_static_engine_ = use_static;
288
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
289

290
  Update();
Y
Yan Chunwei 已提交
291 292 293 294
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
295 296
}

297 298 299 300 301 302 303 304 305 306 307
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

308 309 310 311 312
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

313
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
314

Y
Yan Chunwei 已提交
315
// TODO(Superjomn) refactor this, buggy.
316
void AnalysisConfig::Update() {
317 318 319
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
320 321 322 323 324 325 326 327 328 329 330 331
  // Transfer pass_builder and copy the existing compatible passes.
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
332

333
  } else {
Y
Yan Chunwei 已提交
334 335 336 337 338 339 340 341
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));

    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
342 343 344
  }

  if (use_tensorrt_) {
345 346
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
347
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
348 349 350
          (pass == "conv_bn_fuse_pass" || pass == "fc_fuse_pass")) {
        continue;
      }
351
      pass_builder()->AppendPass(pass);
352 353
    }
  }
354 355 356 357 358 359 360 361 362 363
  if (use_gpu() && use_cudnn_) {
#ifdef PADDLE_WITH_CUDA
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

364
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
365
#ifdef PADDLE_WITH_MKLDNN
366 367 368
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
369 370
    } else {
      pass_builder()->EnableMKLDNN();
371 372 373 374
    }
#endif
  }

375 376 377 378 379
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
380 381
    }
#ifdef PADDLE_WITH_MKLDNN
382
    pass_builder()->EnableMkldnnQuantizer();
383 384 385
#endif
  }

386 387 388 389 390 391
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

392
#ifdef PADDLE_WITH_MKLDNN
393 394
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
395
#else
Y
Yan Chunwei 已提交
396
  if (enable_memory_optim_) {
397 398
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
399 400
  }

石晓伟 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

415
  if (use_xpu_) {
416
#ifndef LITE_SUBGRAPH_WITH_XPU
417 418 419 420 421 422 423 424 425 426 427 428 429 430
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
    if (!use_lite_) {
      LOG(WARNING) << "Because XPU currently only works in Paddle-Lite "
                      "subgraph mode, please make sure you have enabled it.";
    }
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
  }

431 432 433 434 435
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

436
std::string AnalysisConfig::SerializeInfoCache() {
437
  std::stringstream ss;
Y
Yan Chunwei 已提交
438 439 440 441
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

442
  ss << use_gpu_;
443
  ss << use_fc_padding_;
Y
Yan Chunwei 已提交
444
  ss << device_id_;
445 446 447 448 449
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
450 451
  ss << tensorrt_min_subgraph_size_;

452 453 454
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

Y
Yan Chunwei 已提交
455
  ss << enable_memory_optim_;
456 457

  ss << use_mkldnn_;
458
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
459 460 461
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

462
  ss << use_mkldnn_quantizer_;
463
  ss << use_mkldnn_bfloat16_;
464 465
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
466 467
  ss << model_from_memory_;

468 469
  ss << with_profile_;

470 471
  ss << with_glog_info_;

472 473 474 475
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
476 477
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
478 479

  ss << use_lite_;
480 481
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
482

483 484
  ss << thread_local_stream_;

485 486 487
  return ss.str();
}

488
void AnalysisConfig::SetCpuMathLibraryNumThreads(
489 490
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
491 492

  Update();
493 494
}

495
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
496 497 498
#ifdef PADDLE_WITH_CUDA
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
499
  size_t gpu_total, gpu_available;
500
  platform::SetDeviceId(device_id_);
501 502
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
503 504
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
505 506 507 508
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
509 510 511 512
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
513 514
}

515
void AnalysisConfig::EnableMemoryOptim() {
Y
Yan Chunwei 已提交
516 517 518 519
  enable_memory_optim_ = true;
  Update();
}

520
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
521 522 523
  return enable_memory_optim_;
}

524 525 526 527
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
528 529
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
530
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
531 532

  Update();
T
Tao Luo 已提交
533 534
}

535
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
536 537 538 539 540 541 542 543 544 545 546
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
  config.device = device_id_;
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
547 548 549 550
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
551 552 553 554 555 556

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

557 558 559 560 561
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
562
void AnalysisConfig::EnableLiteEngine(
563
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
564 565 566 567 568 569
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
570
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
571 572 573
  Update();
}

574 575 576 577 578 579 580
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

581 582
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

583
}  // namespace paddle