analysis_config.cc 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24 25
#include "paddle/fluid/platform/enforce.h"

26 27 28 29
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

30
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
31 32 33
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

34
namespace paddle {
W
wanghuancoder 已提交
35 36
struct MkldnnQuantizerConfig;

37
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
38
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
39
extern const std::vector<std::string> kLiteSubgraphPasses;
40

41
PassStrategy *AnalysisConfig::pass_builder() const {
42 43 44 45
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
46 47
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
48 49
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
50 51 52
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
53 54 55 56 57 58 59 60 61 62 63 64
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

65 66 67
  return pass_builder_.get();
}

68
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
69
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
70 71

  Update();
72
}
73 74
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
75 76
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
77 78

  Update();
79
}
80 81
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
82 83
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
84 85

  Update();
86
}
87 88
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
92
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
93
  gpu_device_id_ = device_id;
94
#else
Y
Yan Chunwei 已提交
95
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
96 97
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
98 99 100

  Update();
}
101

102
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
103 104 105
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
106 107 108 109 110 111
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
112 113 114
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
115 116 117 118 119 120 121
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

122
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
123 124 125
  use_gpu_ = false;

  Update();
126 127
}

128 129 130 131 132 133
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
134 135 136 137
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
138 139
                               const std::string &precision,
                               bool adaptive_seqlen) {
140 141
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
142 143 144 145 146
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
147 148 149
  Update();
}

150
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
151 152
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
153 154 155 156 157 158
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
159 160 161 162 163 164 165 166 167 168 169
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
170

171 172 173 174 175 176 177 178 179 180 181 182 183
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
184 185
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
186 187
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
188 189 190
  enable_ir_optim_ = true;

  use_ipu_ = true;
191 192
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
193 194
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
195 196 197 198

  Update();
}

W
Wilber 已提交
199 200
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
201 202 203 204 205 206
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
207 208 209

  Update();
}
W
Wilber 已提交
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

238
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
239 240 241 242 243 244
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
245

246
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
247 248
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
249

250
  CP_MEMBER(use_fc_padding_);
251
  // GPU related.
252
  CP_MEMBER(use_gpu_);
253 254
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
255
  CP_MEMBER(use_cudnn_);
256
  CP_MEMBER(gpu_device_id_);
257
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
258

259 260 261
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
262
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
263
  // TensorRT related.
264 265 266 267
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
268
  CP_MEMBER(tensorrt_precision_mode_);
269
  CP_MEMBER(trt_disabled_ops_);
270 271
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
272
  CP_MEMBER(trt_use_static_engine_);
273
  CP_MEMBER(trt_use_calib_mode_);
274
  CP_MEMBER(trt_use_varseqlen_);
275
  CP_MEMBER(trt_with_interleaved_);
276 277
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
278 279 280 281
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
282
  CP_MEMBER(trt_use_inspector_);
283
  CP_MEMBER(trt_engine_memory_sharing_);
D
denglin-github 已提交
284 285 286
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
D
denglin-github 已提交
287 288 289 290 291 292 293
  CP_MEMBER(dlnne_max_batchsize_);
  CP_MEMBER(dlnne_use_static_batch_);
  CP_MEMBER(dlnne_weight_share_mode_);
  CP_MEMBER(dlnne_use_calib_mode_);
  CP_MEMBER(dlnne_precision_mode_);
  CP_MEMBER(dlnne_disable_nodes_by_outputs_);
  CP_MEMBER(dlnne_input_shape_dict_);
S
Sylwester Fraczek 已提交
294
  // MKLDNN related.
295 296
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
297
  CP_MEMBER(mkldnn_cache_capacity_);
298 299 300
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
301
  // Quantization related.
B
baoachun 已提交
302 303 304
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
305 306
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
307 308 309
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
310
  CP_MEMBER(disable_trt_plugin_fp16_);
311

石晓伟 已提交
312 313 314 315
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
316 317
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
318
  // XPU related.
319
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
320
  CP_MEMBER(xpu_device_id_);
321
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
322 323 324 325 326
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
327

W
Wilber 已提交
328 329 330
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
331
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
332

333 334 335
  // profile related.
  CP_MEMBER(with_profile_);

336 337 338
  // glog related.
  CP_MEMBER(with_glog_info_);

339 340 341 342 343 344 345 346 347 348
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

349 350
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
351 352 353
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
354
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
355 356
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
357 358 359 360
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
J
jianghaicheng 已提交
361

362 363 364
  // fleet exe related
  CP_MEMBER(dist_config_);

365 366 367 368 369
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

370
  if (use_gpu_) {
W
Wilber 已提交
371 372
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
373 374
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
375 376
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
377 378 379
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
380 381 382
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
383 384 385
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
386 387 388 389 390
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

391
#undef CP_MEMBER
Y
Yan Chunwei 已提交
392

W
Wilber 已提交
393 394 395 396 397
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
398
    pass_builder_->ClearPasses();
W
Wilber 已提交
399
    auto other_passes = other.pass_builder()->AllPasses();
400 401
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
402
    }
403
  }
D
denglin-github 已提交
404 405 406 407 408 409 410 411
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
412 413 414 415
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
416 417 418 419 420
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
421 422 423 424

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
425 426
}

427
void AnalysisConfig::EnableCUDNN() {
428
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
429 430 431 432 433 434 435 436 437
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

438
void AnalysisConfig::EnableMKLDNN() {
439 440 441 442 443 444
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
445 446

  Update();
447 448
}

449 450 451 452 453 454 455 456 457
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

458 459 460 461 462 463 464 465 466 467 468 469 470
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

471 472
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
473 474
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
475 476 477 478
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
479 480 481 482
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
483 484 485 486 487 488 489 490
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

520
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
521
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
522 523
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
524
  return mkldnn_quantizer_config_.get();
525 526
}

527
void AnalysisConfig::EnableTensorRtEngine(
528
    int64_t workspace_size,
W
Wilber 已提交
529 530 531 532
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
533
    bool use_calib_mode) {
534
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
535 536 537 538 539
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

540
  use_tensorrt_ = true;
541 542 543 544 545 546 547 548 549 550 551 552 553
#if PADDLE_WITH_TENSORRT
  // https://forums.developer.nvidia.com/t/nvinfer1-createexecutioncontextwithoutdevicememory-returns-nullptr/111878/2
  // when trt version less than 7.2,
  // createExecutionContextWithoutDeviceMemory() has bug.
  // so, we cannot enable engine context memory sharing.
#if IS_TRT_VERSION_GE(7200)
  trt_engine_memory_sharing_ = true;
#else
  LOG(WARNING)
      << "TensorRT engine context memory sharing needs version 7.2 and after.";
  trt_engine_memory_sharing_ = false;
#endif
#endif
554 555
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
556
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
557
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
558
  trt_use_static_engine_ = use_static;
559
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
560

561
  Update();
Y
Yan Chunwei 已提交
562 563 564 565
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
566 567
}

D
denglin-github 已提交
568 569 570 571 572 573 574 575 576
void AnalysisConfig::EnableDlnne(
    int min_subgraph_size,
    int max_batch_size,
    bool use_static_batch,
    std::string weight_share_mode,
    std::unordered_set<std::string> disable_nodes_by_ouputs,
    std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict,
    bool use_calib_mode,
    AnalysisConfig::Precision precision_mode) {
D
denglin-github 已提交
577 578
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
D
denglin-github 已提交
579 580 581 582 583 584 585
  dlnne_max_batchsize_ = max_batch_size;
  dlnne_use_static_batch_ = use_static_batch;
  dlnne_weight_share_mode_ = weight_share_mode;
  dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs;
  dlnne_input_shape_dict_ = dlnne_input_shape_dict;
  dlnne_use_calib_mode_ = use_calib_mode;
  dlnne_precision_mode_ = precision_mode;
D
denglin-github 已提交
586 587 588
  Update();
}

589 590 591 592 593 594 595 596 597 598 599
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

600 601 602 603 604
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

605 606
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

607 608 609 610 611
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

612
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
613

Y
Yan Chunwei 已提交
614
// TODO(Superjomn) refactor this, buggy.
615
void AnalysisConfig::Update() {
616
  auto &&info = SerializeInfoCache();
617 618
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
619
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
620 621
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
622
      ((use_npu() ^ pass_builder_->use_npu())) ||
623 624
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
625 626 627 628 629 630 631
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
632 633 634
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
635 636
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
637 638
          use_gpu(),
          false,
639 640 641
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
642 643
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
644 645
          use_gpu(),
          false,
W
Wilber 已提交
646 647 648
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
649 650
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
651 652
          use_gpu(),
          false,
653 654 655
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
656 657 658
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
659

660
  } else {
Y
Yan Chunwei 已提交
661 662 663
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
664 665 666 667
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
668 669
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
670 671
          use_gpu(),
          false,
672 673 674 675
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
676 677
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
678 679
          use_gpu(),
          false,
W
Wilber 已提交
680 681 682 683
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
684 685
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
686 687
          use_gpu(),
          false,
688 689 690 691
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
692 693 694 695
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
696 697 698
  }

  if (use_tensorrt_) {
699 700
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
701
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
702
          (pass == "conv_bn_fuse_pass")) {
703 704
        continue;
      }
705
      pass_builder()->AppendPass(pass);
706 707
    }
  }
708

D
denglin-github 已提交
709 710 711 712 713 714 715
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

716
  if (use_gpu() && use_cudnn_) {
717
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
718 719 720 721 722 723 724 725
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

726
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
727
#ifdef PADDLE_WITH_MKLDNN
728 729 730
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
731 732
    } else {
      pass_builder()->EnableMKLDNN();
733 734 735 736
    }
#endif
  }

737 738 739 740 741
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
742 743
    }
#ifdef PADDLE_WITH_MKLDNN
744
    pass_builder()->EnableMkldnnQuantizer();
745 746 747
#endif
  }

748 749 750 751 752 753
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

768
#ifdef PADDLE_WITH_MKLDNN
769 770
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
771
#else
Y
Yan Chunwei 已提交
772
  if (enable_memory_optim_) {
773 774
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
775 776
  }

石晓伟 已提交
777 778 779 780 781 782 783
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
784 785
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
786 787 788 789 790 791
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

792
  if (use_xpu_) {
793
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
794 795
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
796 797 798
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
799 800 801 802 803
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
804 805
  }

W
Wilber 已提交
806
  if (use_npu_) {
807
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
808 809
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
810 811 812 813 814 815 816 817 818
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
819 820 821 822 823 824 825
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
826 827 828 829 830 831 832
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
833 834 835 836 837
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

838
std::string AnalysisConfig::SerializeInfoCache() {
839
  std::stringstream ss;
Y
Yan Chunwei 已提交
840 841 842 843
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

844
  ss << use_gpu_;
845 846
  ss << use_external_stream_;
  ss << exec_stream_;
847
  ss << use_fc_padding_;
848 849
  ss << gpu_device_id_;
  ss << xpu_device_id_;
850 851 852 853 854
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
855 856
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
857 858 859
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

860 861 862
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

863 864 865
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
866
  ss << enable_memory_optim_;
867
  ss << trt_engine_memory_sharing_;
868 869

  ss << use_mkldnn_;
870
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
871 872 873
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

874
  ss << use_mkldnn_quantizer_;
875
  ss << use_mkldnn_bfloat16_;
876
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
877 878 879
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
880
  ss << ";";
Y
Yan Chunwei 已提交
881 882
  ss << model_from_memory_;

883 884
  ss << with_profile_;

885 886
  ss << with_glog_info_;

887 888 889 890
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
891 892
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
893 894

  ss << use_lite_;
895 896
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
897 898 899 900 901
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
902

W
Wilber 已提交
903 904 905
  ss << use_npu_;
  ss << npu_device_id_;

906 907
  ss << thread_local_stream_;

J
jianghaicheng 已提交
908 909
  ss << use_ipu_;
  ss << ipu_device_num_;
910
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
911 912
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
913 914 915 916
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
J
jianghaicheng 已提交
917

918
  for (auto &op : mixed_black_list_) ss << op.c_str();
919 920 921
  return ss.str();
}

922
void AnalysisConfig::SetCpuMathLibraryNumThreads(
923 924
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
925 926

  Update();
927 928
}

929
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
930
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
931 932
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
933
  size_t gpu_total, gpu_available;
934
  platform::SetDeviceId(gpu_device_id_);
935 936
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
937 938
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
939 940 941 942
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
943 944 945 946
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
947 948
}

949 950
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
951 952 953
  Update();
}

954
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
955 956 957
  return enable_memory_optim_;
}

958 959 960 961
bool AnalysisConfig::trt_engine_memory_sharing() const {
  return trt_engine_memory_sharing_;
}

962 963 964 965
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
966 967
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
968
  model_from_memory_ = true;
T
Tao Luo 已提交
969 970
}

971
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
972 973 974 975 976
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
977
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
978 979 980 981 982
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
983 984 985 986
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
987 988 989 990 991 992

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

993 994 995 996 997
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
998
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
999 1000
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
1001 1002 1003 1004 1005 1006
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
1007
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
1008 1009 1010
  Update();
}

1011 1012 1013 1014 1015 1016 1017
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

1018 1019
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
1031

1032 1033 1034 1035 1036 1037 1038 1039
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
1040
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1051 1052
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1053 1054 1055 1056 1057
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1101 1102 1103
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1104

1105 1106
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1107 1108
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1109 1110 1111
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1112 1113 1114 1115
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1116 1117
      os.InsertRow({"trt_engine_memory_sharing",
                    trt_engine_memory_sharing_ ? "true" : "false"});
1118
#endif
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1142 1143
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1144 1145 1146 1147

  return os.PrintTable();
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1169 1170
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1171 1172
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1173 1174
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1175 1176 1177
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1178 1179 1180
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1206 1207 1208 1209 1210 1211 1212
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1213 1214
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1215 1216 1217 1218 1219 1220
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

1221
const std::string &AnalysisConfig::shape_range_info_path() const {
1222 1223 1224
  return shape_range_info_path_;
}

1225
bool AnalysisConfig::shape_range_info_collected() const {
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

1236
bool AnalysisConfig::tuned_tensorrt_dynamic_shape() const {
1237 1238 1239
  return trt_tuned_dynamic_shape_;
}

1240
bool AnalysisConfig::trt_allow_build_at_runtime() const {
1241 1242
  return trt_allow_build_at_runtime_;
}
1243 1244 1245 1246 1247 1248

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1249
}  // namespace paddle