analysis_config.cc 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
17
#include "paddle/fluid/platform/cpu_info.h"
18
#include "paddle/fluid/platform/enforce.h"
19
#include "paddle/fluid/platform/gpu_info.h"
20

21
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
22 23 24
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

25
namespace paddle {
W
wanghuancoder 已提交
26 27
struct MkldnnQuantizerConfig;

28
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
29
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
30
extern const std::vector<std::string> kLiteSubgraphPasses;
31

32
PassStrategy *AnalysisConfig::pass_builder() const {
33 34 35 36
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
37 38
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
39 40 41 42 43 44 45 46 47 48 49 50
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

51 52 53
  return pass_builder_.get();
}

54
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
55
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
56 57

  Update();
58
}
59 60
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
61 62
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
63 64

  Update();
65
}
66 67
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
68 69
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
70 71

  Update();
72
}
73 74
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
75
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
76 77
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
78
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
79
  gpu_device_id_ = device_id;
80
#else
Y
Yan Chunwei 已提交
81
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
82 83
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
84 85 86

  Update();
}
87
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
88 89 90
  use_gpu_ = false;

  Update();
91 92
}

93 94 95 96 97 98
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
99 100 101 102
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
103 104
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
105 106 107 108 109
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
110 111 112
  Update();
}

113
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
114 115 116 117 118 119
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
120

121
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
122 123
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
124

125
  CP_MEMBER(use_fc_padding_);
126
  // GPU related.
127
  CP_MEMBER(use_gpu_);
128
  CP_MEMBER(use_cudnn_);
129 130
  CP_MEMBER(gpu_device_id_);
  CP_MEMBER(xpu_device_id_);
131
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
132 133

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
134
  // TensorRT related.
135 136 137 138
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
139
  CP_MEMBER(tensorrt_precision_mode_);
140
  CP_MEMBER(trt_disabled_ops_);
141 142
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
143
  CP_MEMBER(trt_use_static_engine_);
144
  CP_MEMBER(trt_use_calib_mode_);
145
  CP_MEMBER(trt_use_oss_);
D
denglin-github 已提交
146 147 148
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
149
  // MKLDNN related.
150 151
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
152
  CP_MEMBER(mkldnn_cache_capacity_);
153 154 155
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
156 157 158
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
159 160 161
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
162
  CP_MEMBER(disable_trt_plugin_fp16_);
163

石晓伟 已提交
164 165 166 167
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
168 169 170 171
  CP_MEMBER(lite_zero_copy_);

  CP_MEMBER(use_xpu_);
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
172 173 174 175 176
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
177

178 179 180
  // profile related.
  CP_MEMBER(with_profile_);

181 182 183
  // glog related.
  CP_MEMBER(with_glog_info_);

184 185 186 187 188 189 190 191 192 193
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

194 195
  CP_MEMBER(thread_local_stream_);

196
  if (use_gpu_) {
197 198 199
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
200 201
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
202 203 204
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
205 206 207 208 209
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

210
#undef CP_MEMBER
Y
Yan Chunwei 已提交
211

W
Wilber 已提交
212 213 214 215 216 217 218
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
    auto all_passes = kTRTSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
W
Wilber 已提交
219 220 221 222
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
W
Wilber 已提交
223 224 225 226 227 228 229
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
230
  }
D
denglin-github 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
246 247
}

248
void AnalysisConfig::EnableCUDNN() {
249
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
250 251 252 253 254 255 256 257 258
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

259
void AnalysisConfig::EnableMKLDNN() {
260 261 262 263 264 265
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
266 267

  Update();
268 269
}

270 271 272 273 274 275 276 277 278
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

279 280 281 282 283 284 285 286 287 288 289 290 291
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

292 293
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
294 295
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
296 297 298 299
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
300 301 302 303
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
304 305 306 307 308 309 310 311
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

312
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
313
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
314 315
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
316
  return mkldnn_quantizer_config_.get();
317 318
}

319
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
320
    int workspace_size, int max_batch_size, int min_subgraph_size,
321
    AnalysisConfig::Precision precision_mode, bool use_static,
322
    bool use_calib_mode) {
323
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
324 325 326 327 328
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

329 330 331
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
332
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
333
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
334
  trt_use_static_engine_ = use_static;
335
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
336

337
  Update();
Y
Yan Chunwei 已提交
338 339 340 341
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
342 343
}

D
denglin-github 已提交
344 345 346 347 348 349
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

350 351 352 353 354 355 356 357 358 359 360
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

361 362 363 364 365
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

366 367 368 369 370
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

371
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
372

Y
Yan Chunwei 已提交
373
// TODO(Superjomn) refactor this, buggy.
374
void AnalysisConfig::Update() {
375 376 377
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
378 379 380 381 382 383 384 385 386
  // Transfer pass_builder and copy the existing compatible passes.
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
387 388 389 390 391 392
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
Y
Yan Chunwei 已提交
393 394 395
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
396

397
  } else {
Y
Yan Chunwei 已提交
398 399 400
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
401 402 403 404 405 406 407
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
408 409 410 411
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
412 413 414
  }

  if (use_tensorrt_) {
415 416
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
417
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
418
          (pass == "conv_bn_fuse_pass")) {
419 420
        continue;
      }
421
      pass_builder()->AppendPass(pass);
422 423
    }
  }
D
denglin-github 已提交
424 425 426 427 428 429 430
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

431
  if (use_gpu() && use_cudnn_) {
432
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
433 434 435 436 437 438 439 440
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

441
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
442
#ifdef PADDLE_WITH_MKLDNN
443 444 445
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
446 447
    } else {
      pass_builder()->EnableMKLDNN();
448 449 450 451
    }
#endif
  }

452 453 454 455 456
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
457 458
    }
#ifdef PADDLE_WITH_MKLDNN
459
    pass_builder()->EnableMkldnnQuantizer();
460 461 462
#endif
  }

463 464 465 466 467 468
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

469
#ifdef PADDLE_WITH_MKLDNN
470 471
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
472
#else
Y
Yan Chunwei 已提交
473
  if (enable_memory_optim_) {
474 475
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
476 477
  }

石晓伟 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

492
  if (use_xpu_) {
493
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
494 495 496 497
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
498 499 500 501 502
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
503 504
  }

505 506 507 508 509
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

510
std::string AnalysisConfig::SerializeInfoCache() {
511
  std::stringstream ss;
Y
Yan Chunwei 已提交
512 513 514 515
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

516
  ss << use_gpu_;
517
  ss << use_fc_padding_;
518 519
  ss << gpu_device_id_;
  ss << xpu_device_id_;
520 521 522 523 524
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
525 526
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
527 528 529
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

530 531 532
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

533 534 535
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
536
  ss << enable_memory_optim_;
537 538

  ss << use_mkldnn_;
539
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
540 541 542
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

543
  ss << use_mkldnn_quantizer_;
544
  ss << use_mkldnn_bfloat16_;
545 546
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
547 548
  ss << model_from_memory_;

549 550
  ss << with_profile_;

551 552
  ss << with_glog_info_;

553 554 555 556
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
557 558
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
559 560

  ss << use_lite_;
561 562
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
563 564 565 566 567
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
568

569 570
  ss << thread_local_stream_;

571 572 573
  return ss.str();
}

574
void AnalysisConfig::SetCpuMathLibraryNumThreads(
575 576
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
577 578

  Update();
579 580
}

581
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
582
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
583 584
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
585
  size_t gpu_total, gpu_available;
586
  platform::SetDeviceId(gpu_device_id_);
587 588
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
589 590
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
591 592 593 594
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
595 596 597 598
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
599 600
}

601
void AnalysisConfig::EnableMemoryOptim() {
Y
Yan Chunwei 已提交
602 603 604 605
  enable_memory_optim_ = true;
  Update();
}

606
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
607 608 609
  return enable_memory_optim_;
}

610 611 612 613
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
614 615
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
616
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
617 618

  Update();
T
Tao Luo 已提交
619 620
}

621
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
622 623 624 625 626
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
627
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
628 629 630 631 632
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
633 634 635 636
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
637 638 639 640 641 642

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

643 644 645 646 647
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
648
void AnalysisConfig::EnableLiteEngine(
649
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
650 651 652 653 654 655
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
656
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
657 658 659
  Update();
}

660 661 662 663 664 665 666
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

667 668
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

669
}  // namespace paddle