operator.h 18.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33 34 35 36
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
41

Q
Qiao Longfei 已提交
42 43
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
44 45 46
namespace paddle {
namespace framework {

47
/// If a variable is a empty variable, that name will be used.
48
constexpr char kEmptyVarName[] = "@EMPTY@";
49 50 51

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
52
constexpr char kTempVarName[] = "@TEMP@";
53 54

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
55 56
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
57
constexpr char kGradVarSuffix[] = "@GRAD";
58

M
minqiyang 已提交
59 60
constexpr size_t kGradVarSuffixSize = 5U;

61
/// Variables with this suffix are supposed to be filled up with zeros.
62
constexpr char kZeroVarSuffix[] = "@ZERO";
63

C
chengduo 已提交
64 65 66
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
67 68 69 70 71 72 73 74
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
75 76 77 78 79 80 81 82 83
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
84
// define some kernel priority
85
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
86 87
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

88
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
89 90 91 92 93
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
94 95
}

M
minqiyang 已提交
96
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
97
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
98 99 100 101 102
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
103 104
}

C
chengduo 已提交
105 106
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
107

Q
Qiao Longfei 已提交
108
class OperatorBase;
109
class ExecutionContext;
110

X
Xin Pan 已提交
111 112
class RuntimeContext {
 public:
X
Xin Pan 已提交
113 114
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
115

X
Xin Pan 已提交
116 117 118 119
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
120 121 122 123
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
124
/**
X
Xin Pan 已提交
125
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
126 127 128 129 130 131
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
132 133
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
134

Q
Qiao Longfei 已提交
135 136
  virtual ~OperatorBase() {}

137
  /// Executor will call this interface function to Run an op.
138 139
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
140

T
typhoonzero 已提交
141 142 143
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

144 145 146
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
147

148 149
  virtual bool SupportGPU() const { return false; }

150 151
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
152
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
153 154
  template <typename T>
  inline const T& Attr(const std::string& name) const {
155 156 157
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
158
    return BOOST_GET_CONST(T, attrs_.at(name));
159
  }
160 161 162 163 164 165 166 167
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
168
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
169

Y
Yu Yang 已提交
170 171
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
172

S
sneaxiy 已提交
173
  const OpInfo& Info() const {
174 175 176
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
177 178 179
    return *info_;
  }

180
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
181
  //! Get a input with argument's name described in `op_proto`
182
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
183
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
184
  const std::vector<std::string>& Inputs(const std::string& name) const;
185
  //! Get all inputs variable names
Q
qijun 已提交
186 187
  std::vector<std::string> InputVars() const;

188
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
189
  //! Get a output with argument's name described in `op_proto`
190
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
191 192
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
193
  const std::vector<std::string>& Outputs(const std::string& name) const;
194
  //! Get all outputs variable names
Y
Yu Yang 已提交
195
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
196

197
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
198

B
baojun-nervana 已提交
199
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
200 201
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
202

Z
Zhang Ting 已提交
203 204 205 206 207
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
208
 protected:
Q
Qiao Longfei 已提交
209
  std::string type_;
D
dongzhihong 已提交
210
  // NOTE: in case of OpGrad, inputs_ contains:
211
  // I (Inputs)
D
dongzhihong 已提交
212 213
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
214
  VariableNameMap inputs_;
Y
Yu Yang 已提交
215

D
dongzhihong 已提交
216 217
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
218
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
219
  AttributeMap attrs_;
S
sneaxiy 已提交
220 221 222 223

  // OpInfo
  const OpInfo* info_;

224 225
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
226 227 228 229

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
230 231
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
232 233
};

234
class ExecutionContext {
Y
Yan Chunwei 已提交
235
 public:
236
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
237
                   const platform::DeviceContext& device_context,
238 239
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
240
  virtual ~ExecutionContext() {}
241

H
hong 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
262 263 264

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
265
  template <typename T>
Y
Yu Yang 已提交
266
  inline const T& Attr(const std::string& name) const {
267
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
268 269
  }

H
hong 已提交
270 271 272
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
273

H
hong 已提交
274
  virtual bool HasInput(const std::string& name) const;
275

H
hong 已提交
276
  virtual bool HasOutput(const std::string& name) const;
277

H
hong 已提交
278
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
279
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
280 281
  }

H
hong 已提交
282
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
283
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
284 285
  }

H
hong 已提交
286
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
287

H
hong 已提交
288
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
289

H
hong 已提交
290
  virtual const std::vector<Variable*> MultiInputVar(
291
      const std::string& name) const {
292 293
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
294 295 296 297
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
298
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
299 300
  }

H
hong 已提交
301
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
302 303 304 305 306 307 308
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
309 310 311 312 313 314 315 316 317 318 319
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

320 321
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
322
    auto* var = InputVar(name);
323
    return var == nullptr ? nullptr : &var->Get<T>();
324 325 326 327
  }

  template <typename T>
  T* Output(const std::string& name) const {
328
    auto var = OutputVar(name);
329
    return var == nullptr ? nullptr : var->GetMutable<T>();
330 331 332 333
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
334 335
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
336 337
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
338 339 340 341 342
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
343
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
344 345 346 347 348 349 350
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
351 352 353
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
354 355
      return {};
    }
H
hong 已提交
356

X
Xin Pan 已提交
357 358 359 360 361 362
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
363

X
Xin Pan 已提交
364 365 366
    return res;
  }

367
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
368

Q
QI JUN 已提交
369 370 371 372 373
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

374
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
375
    return device_context_;
Q
qijun 已提交
376
  }
Q
qijun 已提交
377

Q
QI JUN 已提交
378 379
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
380 381 382
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
383 384 385 386 387
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
388 389 390
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
391
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
392 393 394 395 396
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

397 398 399 400 401 402
    PADDLE_ENFORCE_GE(
        allocation_ptr->size(), framework::product(dim) * sizeof(T),
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
            allocation_ptr->size(), framework::product(dim) * sizeof(T)));
X
Xin Pan 已提交
403 404 405 406 407 408 409 410

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
411 412 413
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
H
hong 已提交
414

415
 private:
416 417
  const OperatorBase& op_;
  const Scope& scope_;
418
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
419
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
420 421
};

422 423 424 425 426 427 428 429 430 431 432 433 434 435
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
436
class OpKernelBase {
Q
qijun 已提交
437
 public:
Q
qijun 已提交
438
  /**
439
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
440 441
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
442
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
443 444
   */

445
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
446

Y
Yu Yang 已提交
447 448 449 450 451 452 453
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
454 455
};

Y
Yu Yang 已提交
456 457
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
458
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
459
  using OpKernelMap =
Y
yuyang18 已提交
460
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
461

Y
Yu Yang 已提交
462 463
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
464 465
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
466 467 468 469
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
470
  }
Y
Yan Chunwei 已提交
471

472 473 474 475 476
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

477
  bool SupportGPU() const override {
Y
Yu Yang 已提交
478 479 480 481 482
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
483 484
  }

485
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
486

X
Xin Pan 已提交
487 488
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
489

490 491 492
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

493
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
494

495 496
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
497 498 499
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
500

501 502
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
503 504 505
    return kernel_type_->place_;
  }

Y
Yu Yang 已提交
506
 private:
507 508
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
509
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
510
  // same.
511
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
512
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
513 514
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
515 516

  /**
T
tianshuo78520a 已提交
517 518
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
519 520 521 522
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
523 524 525 526
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
527 528 529 530

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
531

L
Liu Yiqun 已提交
532 533 534
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

535
 protected:
L
Liu Yiqun 已提交
536 537
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
538 539
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
540
  mutable bool need_prepare_data_ = true;
541 542
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
543
  mutable std::mutex cache_update_mutex_;
544
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
545 546
};

Y
Yu Yang 已提交
547 548
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
549 550
}  // namespace framework
}  // namespace paddle