operator.h 18.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
X
polish  
Xin Pan 已提交
34
#include "paddle/fluid/framework/operator_kernel_configs.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
38
#include "paddle/fluid/framework/unused_var_check.h"
39
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
40 41
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
42

Q
Qiao Longfei 已提交
43 44
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
45 46 47
namespace paddle {
namespace framework {

48
/// If a variable is a empty variable, that name will be used.
49
constexpr char kEmptyVarName[] = "@EMPTY@";
50 51 52

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
53
constexpr char kTempVarName[] = "@TEMP@";
54 55 56 57

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
58
constexpr char kGradVarSuffix[] = "@GRAD";
59

M
minqiyang 已提交
60 61
constexpr size_t kGradVarSuffixSize = 5U;

62
/// Variables with this suffix are supposed to be filled up with zeros.
63
constexpr char kZeroVarSuffix[] = "@ZERO";
64

C
chengduo 已提交
65 66 67
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
68 69 70 71 72 73 74 75
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
76 77 78 79 80 81 82 83 84
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
85
// define some kernel priority
86
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
87 88
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

89
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
90 91 92 93 94
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
95 96
}

M
minqiyang 已提交
97
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
98
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
99 100 101 102 103
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
104 105
}

C
chengduo 已提交
106 107
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
108

Q
Qiao Longfei 已提交
109
class OperatorBase;
110
class ExecutionContext;
111

X
Xin Pan 已提交
112 113
class RuntimeContext {
 public:
X
Xin Pan 已提交
114 115
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
116

X
Xin Pan 已提交
117 118 119 120
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
121 122 123 124
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
125
/**
X
Xin Pan 已提交
126
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
127 128 129 130 131 132
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
133 134
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
135

Q
Qiao Longfei 已提交
136 137
  virtual ~OperatorBase() {}

138
  /// Executor will call this interface function to Run an op.
139 140
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
141

T
typhoonzero 已提交
142 143 144
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

145 146 147
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
148

149 150
  virtual bool SupportGPU() const { return false; }

151 152
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
153
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
154 155
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
156 157
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
158 159 160
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
161

Y
Yu Yang 已提交
162 163
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
164

S
sneaxiy 已提交
165 166 167 168 169
  const OpInfo& Info() const {
    PADDLE_ENFORCE_NOT_NULL(info_, "OpInfo of %s is not found", type_);
    return *info_;
  }

170
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
171
  //! Get a input with argument's name described in `op_proto`
172
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
173
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
174
  const std::vector<std::string>& Inputs(const std::string& name) const;
175
  //! Get all inputs variable names
Q
qijun 已提交
176 177
  std::vector<std::string> InputVars() const;

178
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
179
  //! Get a output with argument's name described in `op_proto`
180
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
181 182
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
183
  const std::vector<std::string>& Outputs(const std::string& name) const;
184
  //! Get all outputs variable names
Y
Yu Yang 已提交
185
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
186

187
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
188
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
189 190
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
191

Q
qiaolongfei 已提交
192
 protected:
Q
Qiao Longfei 已提交
193
  std::string type_;
D
dongzhihong 已提交
194
  // NOTE: in case of OpGrad, inputs_ contains:
195
  // I (Inputs)
D
dongzhihong 已提交
196 197
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
198
  VariableNameMap inputs_;
Y
Yu Yang 已提交
199

D
dongzhihong 已提交
200 201
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
202
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
203
  AttributeMap attrs_;
S
sneaxiy 已提交
204 205 206 207

  // OpInfo
  const OpInfo* info_;

208 209
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
210 211 212 213

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
214 215
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
216 217
};

218 219 220 221 222 223 224 225 226 227 228 229 230
#ifdef PADDLE_WITH_CUDA
using KernelConfig = boost::variant<
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>>;
#else
using KernelConfig = boost::variant<boost::blank>;
#endif

using OpKernelConfigsMap =
    std::unordered_map<OpKernelType, std::vector<KernelConfig>,
                       OpKernelType::Hash>;

231
class ExecutionContext {
Y
Yan Chunwei 已提交
232
 public:
233
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
234
                   const platform::DeviceContext& device_context,
235 236 237 238 239 240 241
                   const RuntimeContext& ctx,
                   std::vector<KernelConfig>* configs)
      : op_(op),
        scope_(scope),
        device_context_(device_context),
        ctx_(ctx),
        kernel_configs_(configs) {}
H
hong 已提交
242
  virtual ~ExecutionContext() {}
243

H
hong 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
264 265 266

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
267
  template <typename T>
Y
Yu Yang 已提交
268
  inline const T& Attr(const std::string& name) const {
H
hong 已提交
269
    return boost::get<T>(GetAttr(name));
Q
qiaolongfei 已提交
270 271
  }

H
hong 已提交
272 273 274
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
275

H
hong 已提交
276
  virtual bool HasInput(const std::string& name) const;
277

H
hong 已提交
278
  virtual bool HasOutput(const std::string& name) const;
279

H
hong 已提交
280
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
281
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
282 283
  }

H
hong 已提交
284
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
285
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
286 287
  }

H
hong 已提交
288
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
289

H
hong 已提交
290
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
291

H
hong 已提交
292
  virtual const std::vector<Variable*> MultiInputVar(
293
      const std::string& name) const {
294 295
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
296 297 298 299
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
300
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
301 302
  }

H
hong 已提交
303
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
304 305 306 307 308 309 310
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
311 312 313 314 315 316 317 318 319 320 321
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

322 323
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
324
    auto* var = InputVar(name);
325
    return var == nullptr ? nullptr : &var->Get<T>();
326 327 328 329
  }

  template <typename T>
  T* Output(const std::string& name) const {
330
    auto var = OutputVar(name);
331
    return var == nullptr ? nullptr : var->GetMutable<T>();
332 333 334 335
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
336 337
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
338 339
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
340 341 342 343 344
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
345
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
346 347 348 349 350 351 352
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
353 354 355
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
356 357
      return {};
    }
H
hong 已提交
358

X
Xin Pan 已提交
359 360 361 362 363 364
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
365

X
Xin Pan 已提交
366 367 368
    return res;
  }

369
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
370

Q
QI JUN 已提交
371 372 373 374 375
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

376
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
377
    return device_context_;
Q
qijun 已提交
378
  }
Q
qijun 已提交
379

Q
QI JUN 已提交
380 381
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
382
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true);
Q
QI JUN 已提交
383 384 385 386 387
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
388 389 390
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
391
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
392 393 394 395 396
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

397
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
398 399 400 401 402 403 404 405 406
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

407
  template <typename T>
408
  T& GetKernelConfig(size_t idx) const {
Q
qingqing01 已提交
409 410
    PADDLE_ENFORCE(
        kernel_configs_ && kernel_configs_->size() > static_cast<size_t>(idx),
411
        "%s selected kernel doesn't have kernel config %lu <= %lu",
Q
qingqing01 已提交
412
        op_.Type().c_str(), kernel_configs_->size(), idx);
413
    return *boost::get<std::shared_ptr<T>>((*kernel_configs_)[idx]);
414 415
  }

H
hong 已提交
416 417 418
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
H
hong 已提交
419

420
 private:
421 422
  const OperatorBase& op_;
  const Scope& scope_;
423
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
424
  const RuntimeContext& ctx_;
425
  mutable std::vector<KernelConfig>* kernel_configs_;
Q
Qiao Longfei 已提交
426 427
};

428 429 430 431 432 433 434 435 436 437 438 439 440 441
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
442
class OpKernelBase {
Q
qijun 已提交
443
 public:
Q
qijun 已提交
444
  /**
445
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
446 447
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
448
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
449 450
   */

451
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
452

Y
Yu Yang 已提交
453 454 455 456 457 458 459
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
460 461
};

Y
Yu Yang 已提交
462 463
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
464
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
465
  using OpKernelMap =
Y
yuyang18 已提交
466
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
467

Y
Yu Yang 已提交
468 469
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
470 471
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
472 473 474 475
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
476
  }
Y
Yan Chunwei 已提交
477

478 479 480 481 482
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

483
  bool SupportGPU() const override {
Y
Yu Yang 已提交
484 485 486 487 488
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
489 490
  }

491
  virtual void InferShape(InferShapeContext* ctx) const {
S
sneaxiy 已提交
492
    Info().infer_shape_(ctx);
493
  }
Y
Yu Yang 已提交
494

X
Xin Pan 已提交
495 496
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
497

498 499 500
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

501
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
502

X
polish  
Xin Pan 已提交
503 504
  std::vector<KernelConfig>* GetKernelConfig(const OpKernelType& key) const;

505 506
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
507 508 509
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
510 511

 private:
512 513
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
514
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
515
  // same.
516
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
517
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
518 519
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
520 521 522 523 524 525 526

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
527 528 529 530
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
531 532 533 534

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
535

L
Liu Yiqun 已提交
536 537 538
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

539 540
 protected:
  mutable OpKernelConfigsMap kernel_configs_map_;
L
Liu Yiqun 已提交
541 542
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
543 544
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
545 546
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
547
  mutable std::mutex cache_update_mutex_;
548
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
549 550
};

Y
Yu Yang 已提交
551 552
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
553 554
}  // namespace framework
}  // namespace paddle