operator.h 17.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
X
polish  
Xin Pan 已提交
34
#include "paddle/fluid/framework/operator_kernel_configs.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
41

Q
Qiao Longfei 已提交
42 43
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
44 45 46
namespace paddle {
namespace framework {

47
/// If a variable is a empty variable, that name will be used.
48
constexpr char kEmptyVarName[] = "@EMPTY@";
49 50 51

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
52
constexpr char kTempVarName[] = "@TEMP@";
53 54 55 56

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
57
constexpr char kGradVarSuffix[] = "@GRAD";
58

M
minqiyang 已提交
59 60
constexpr size_t kGradVarSuffixSize = 5U;

61
/// Variables with this suffix are supposed to be filled up with zeros.
62
constexpr char kZeroVarSuffix[] = "@ZERO";
63

C
chengduo 已提交
64 65 66
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
67 68 69 70 71 72 73 74
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
75 76 77 78 79 80 81 82 83
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
84
// define some kernel priority
85
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
86 87
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

88
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
89 90 91 92 93
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
94 95
}

M
minqiyang 已提交
96
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
97
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
98 99 100 101 102
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
103 104
}

Q
qiaolongfei 已提交
105
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
106 107
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
108

Q
Qiao Longfei 已提交
109
class OperatorBase;
110
class ExecutionContext;
111

X
Xin Pan 已提交
112 113
class RuntimeContext {
 public:
X
Xin Pan 已提交
114 115
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
116

X
Xin Pan 已提交
117 118 119 120
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
121 122 123 124
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
125
/**
X
Xin Pan 已提交
126
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
127 128 129 130 131 132
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
133 134
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
135

Q
Qiao Longfei 已提交
136 137
  virtual ~OperatorBase() {}

138
  /// Executor will call this interface function to Run an op.
139 140
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
141

T
typhoonzero 已提交
142 143 144
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

145 146 147
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
148

149 150
  virtual bool SupportGPU() const { return false; }

151 152
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
153
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
154 155
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
156 157
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
158 159 160
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
161

Y
Yu Yang 已提交
162 163
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
164

S
sneaxiy 已提交
165 166 167 168 169
  const OpInfo& Info() const {
    PADDLE_ENFORCE_NOT_NULL(info_, "OpInfo of %s is not found", type_);
    return *info_;
  }

170
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
171
  //! Get a input with argument's name described in `op_proto`
172
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
173
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
174
  const std::vector<std::string>& Inputs(const std::string& name) const;
175
  //! Get all inputs variable names
Q
qijun 已提交
176 177
  std::vector<std::string> InputVars() const;

178
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
179
  //! Get a output with argument's name described in `op_proto`
180
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
181 182
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
183
  const std::vector<std::string>& Outputs(const std::string& name) const;
184
  //! Get all outputs variable names
Y
Yu Yang 已提交
185
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
186

187
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
188
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
189 190
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
191

Q
qiaolongfei 已提交
192
 protected:
Q
Qiao Longfei 已提交
193
  std::string type_;
D
dongzhihong 已提交
194
  // NOTE: in case of OpGrad, inputs_ contains:
195
  // I (Inputs)
D
dongzhihong 已提交
196 197
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
198
  VariableNameMap inputs_;
Y
Yu Yang 已提交
199

D
dongzhihong 已提交
200 201
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
202
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
203
  AttributeMap attrs_;
S
sneaxiy 已提交
204 205 206 207

  // OpInfo
  const OpInfo* info_;

208 209
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
210 211 212 213

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
214 215
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
216 217
};

218 219 220 221 222 223 224 225 226 227 228 229 230
#ifdef PADDLE_WITH_CUDA
using KernelConfig = boost::variant<
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>>;
#else
using KernelConfig = boost::variant<boost::blank>;
#endif

using OpKernelConfigsMap =
    std::unordered_map<OpKernelType, std::vector<KernelConfig>,
                       OpKernelType::Hash>;

231
class ExecutionContext {
Y
Yan Chunwei 已提交
232
 public:
233
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
234
                   const platform::DeviceContext& device_context,
235 236 237 238 239 240 241
                   const RuntimeContext& ctx,
                   std::vector<KernelConfig>* configs)
      : op_(op),
        scope_(scope),
        device_context_(device_context),
        ctx_(ctx),
        kernel_configs_(configs) {}
242

Q
qiaolongfei 已提交
243 244 245 246
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
247
  template <typename T>
Y
Yu Yang 已提交
248 249
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
250 251
  }

252 253
  bool HasAttr(const std::string& name) const { return op_.HasAttr(name); }

254
  bool HasInput(const std::string& name) const;
255

256
  bool HasOutput(const std::string& name) const;
257

Y
Yu Yang 已提交
258
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
259
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
260 261
  }

Y
Yu Yang 已提交
262
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
263
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
264 265
  }

X
Xin Pan 已提交
266
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
267

X
Xin Pan 已提交
268
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
269

270 271
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
272 273 274 275
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
276
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
277 278 279 280 281 282 283 284 285 286 287
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

288 289
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
290
    auto* var = InputVar(name);
291
    return var == nullptr ? nullptr : &var->Get<T>();
292 293 294 295
  }

  template <typename T>
  T* Output(const std::string& name) const {
296
    auto var = OutputVar(name);
297
    return var == nullptr ? nullptr : var->GetMutable<T>();
298 299 300 301
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

332
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
333

Q
QI JUN 已提交
334 335 336 337 338
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

339
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
340
    return device_context_;
Q
qijun 已提交
341
  }
Q
qijun 已提交
342

Q
QI JUN 已提交
343 344
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
345
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true);
Q
QI JUN 已提交
346 347 348 349 350
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
351
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
352 353 354
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
355

D
dzhwinter 已提交
356
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
357 358 359 360
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
361 362 363
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
364
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
365 366 367 368 369
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

370
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
371 372 373 374 375 376 377 378 379
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

380
  template <typename T>
381
  T& GetKernelConfig(size_t idx) const {
Q
qingqing01 已提交
382 383
    PADDLE_ENFORCE(
        kernel_configs_ && kernel_configs_->size() > static_cast<size_t>(idx),
384
        "%s selected kernel doesn't have kernel config %lu <= %lu",
Q
qingqing01 已提交
385
        op_.Type().c_str(), kernel_configs_->size(), idx);
386
    return *boost::get<std::shared_ptr<T>>((*kernel_configs_)[idx]);
387 388
  }

389
 private:
390 391
  const OperatorBase& op_;
  const Scope& scope_;
392
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
393
  const RuntimeContext& ctx_;
394
  mutable std::vector<KernelConfig>* kernel_configs_;
Q
Qiao Longfei 已提交
395 396
};

397 398 399 400 401 402 403 404 405 406 407 408 409 410
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
411
class OpKernelBase {
Q
qijun 已提交
412
 public:
Q
qijun 已提交
413
  /**
414
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
415 416
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
417
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
418 419
   */

420
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
421

Y
Yu Yang 已提交
422 423 424 425 426 427 428
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
429 430
};

Y
Yu Yang 已提交
431 432
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
433
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
434
  using OpKernelMap =
Y
yuyang18 已提交
435
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
436

Y
Yu Yang 已提交
437 438
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
439 440
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
441 442 443 444
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
445
  }
Y
Yan Chunwei 已提交
446

447
  bool SupportGPU() const override {
Y
Yu Yang 已提交
448 449 450 451 452
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
453 454
  }

455
  virtual void InferShape(InferShapeContext* ctx) const {
S
sneaxiy 已提交
456
    Info().infer_shape_(ctx);
457
  }
Y
Yu Yang 已提交
458

X
Xin Pan 已提交
459 460
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
461

462
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
463

X
polish  
Xin Pan 已提交
464 465
  std::vector<KernelConfig>* GetKernelConfig(const OpKernelType& key) const;

X
Xin Pan 已提交
466
 protected:
467 468 469
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
470 471

 private:
472
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
473
  // same.
474
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
475
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
476 477
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
478 479 480 481 482 483 484

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
485 486 487 488
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
489 490 491 492

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
493

L
Liu Yiqun 已提交
494 495 496
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

497 498
 protected:
  mutable OpKernelConfigsMap kernel_configs_map_;
L
Liu Yiqun 已提交
499 500
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
501 502
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
503 504
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
505
  mutable std::mutex cache_update_mutex_;
506
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
507 508
};

Y
Yu Yang 已提交
509 510
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
511 512
}  // namespace framework
}  // namespace paddle