operator.h 16.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

Q
qiaolongfei 已提交
72
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
73 74
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
75

Q
Qiao Longfei 已提交
76
class OperatorBase;
77
class ExecutionContext;
78

X
Xin Pan 已提交
79 80
class RuntimeContext {
 public:
X
Xin Pan 已提交
81 82
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
83 84 85 86 87

  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
88
/**
X
Xin Pan 已提交
89
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
90 91 92 93 94 95
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
96 97
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
98

Q
Qiao Longfei 已提交
99 100
  virtual ~OperatorBase() {}

101
  /// Executor will call this interface function to Run an op.
102 103
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
104

T
typhoonzero 已提交
105 106 107
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

108 109 110
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
111

112 113
  virtual bool SupportGPU() const { return false; }

114 115
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
116
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
117 118
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
119 120
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
121 122 123
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
124

Y
Yu Yang 已提交
125 126
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
127

128
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
129
  //! Get a input with argument's name described in `op_proto`
130
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
131
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
132
  const std::vector<std::string>& Inputs(const std::string& name) const;
133
  //! Get all inputs variable names
Q
qijun 已提交
134 135
  std::vector<std::string> InputVars() const;

136
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
137
  //! Get a output with argument's name described in `op_proto`
138
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
139 140
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
141
  const std::vector<std::string>& Outputs(const std::string& name) const;
142
  //! Get all outputs variable names
Y
Yu Yang 已提交
143
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
144

145
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
146
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
147 148
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
149

Q
qiaolongfei 已提交
150
 protected:
Q
Qiao Longfei 已提交
151
  std::string type_;
D
dongzhihong 已提交
152
  // NOTE: in case of OpGrad, inputs_ contains:
153
  // I (Inputs)
D
dongzhihong 已提交
154 155
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
156
  VariableNameMap inputs_;
Y
Yu Yang 已提交
157

D
dongzhihong 已提交
158 159
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
160
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
161
  AttributeMap attrs_;
162 163
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
164 165 166 167

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
168 169
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
170 171
};

172
class ExecutionContext {
Y
Yan Chunwei 已提交
173
 public:
174
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
175 176 177
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
178

Q
qiaolongfei 已提交
179 180 181 182
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
183
  template <typename T>
Y
Yu Yang 已提交
184 185
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
186 187
  }

188
  bool HasInput(const std::string& name) const;
189

190
  bool HasOutput(const std::string& name) const;
191

Y
Yu Yang 已提交
192
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
193
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
194 195
  }

Y
Yu Yang 已提交
196
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
197
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
198 199
  }

X
Xin Pan 已提交
200
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
201

X
Xin Pan 已提交
202
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
203

204 205
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
206 207 208 209
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
210
    std::vector<const Variable*> res;
X
Xin Pan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
231
    res.reserve(names.size());
232 233
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
234 235
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
236
                   });
Y
Yan Chunwei 已提交
237 238 239
    return res;
  }

X
Xin Pan 已提交
240
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
241
    auto names = op_.Outputs(name);
242
    std::vector<Variable*> res;
243
    res.reserve(names.size());
244 245
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
246 247
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
248
                   });
Y
Yan Chunwei 已提交
249 250 251
    return res;
  }

252 253
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
254
    auto* var = InputVar(name);
255
    return var == nullptr ? nullptr : &var->Get<T>();
256 257 258 259
  }

  template <typename T>
  T* Output(const std::string& name) const {
260
    auto var = OutputVar(name);
261
    return var == nullptr ? nullptr : var->GetMutable<T>();
262 263
  }

X
Xin Pan 已提交
264
  template <typename T>
X
clean  
Xin Pan 已提交
265 266
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
267 268 269 270
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
271 272
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
273 274 275
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
276
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
277

X
clean  
Xin Pan 已提交
278
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
279

280 281
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
314 315 316 317
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
318
                   [&](const std::string& sub_name) -> const T* {
319
                     auto var = scope_.FindVar(sub_name);
320
                     return var == nullptr ? nullptr : &var->Get<T>();
321 322 323 324 325
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
326
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
327
    auto names = op_.Outputs(name);
328
    std::vector<T*> res;
329 330
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
331
                   [&](const std::string& sub_name) -> T* {
332
                     auto var = scope_.FindVar(sub_name);
333
                     return var == nullptr ? nullptr : var->GetMutable<T>();
334 335 336 337
                   });
    return res;
  }

338
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
339

Q
QI JUN 已提交
340 341 342 343 344
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

345
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
346
    return device_context_;
Q
qijun 已提交
347
  }
Q
qijun 已提交
348

Q
QI JUN 已提交
349 350 351 352 353 354 355 356
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
357
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
358 359 360
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
361

D
dzhwinter 已提交
362
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
363 364 365 366
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

367
 private:
368 369
  const OperatorBase& op_;
  const Scope& scope_;
370
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
371
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
372 373
};

374 375 376
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
377
template <>
X
clean  
Xin Pan 已提交
378
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
379 380
    const std::string& name) const;

381 382 383 384
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
385 386 387 388
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

389 390 391
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
392
template <>
X
clean  
Xin Pan 已提交
393
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
394

395 396 397 398
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
399
class OpKernelBase {
Q
qijun 已提交
400
 public:
Q
qijun 已提交
401
  /**
402
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
403 404
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
405
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
406 407
   */

408
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
409

Y
Yu Yang 已提交
410 411 412 413 414 415 416
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
417 418
};

Y
Yu Yang 已提交
419 420
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
421
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
422
  using OpKernelMap =
Y
yuyang18 已提交
423
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
424

Y
Yu Yang 已提交
425 426
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
427 428
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
429 430 431 432
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
433
  }
Y
Yan Chunwei 已提交
434

435
  bool SupportGPU() const override {
Y
Yu Yang 已提交
436 437 438 439 440
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
441 442
  }

443 444 445
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
446

X
Xin Pan 已提交
447 448
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
449

Q
qiaolongfei 已提交
450
 protected:
451 452 453 454
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
455 456

 private:
457
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
458
  // same.
459
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
460
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
461 462 463 464 465 466 467

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
468 469 470 471
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
472 473 474 475

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
476 477
};

Y
Yu Yang 已提交
478 479
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
480 481
}  // namespace framework
}  // namespace paddle