operator.h 18.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33 34 35 36
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
41

Q
Qiao Longfei 已提交
42 43
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
44 45 46
namespace paddle {
namespace framework {

47
/// If a variable is a empty variable, that name will be used.
48
constexpr char kEmptyVarName[] = "@EMPTY@";
49 50 51

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
52
constexpr char kTempVarName[] = "@TEMP@";
53 54

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
55 56
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
57
constexpr char kGradVarSuffix[] = "@GRAD";
58

M
minqiyang 已提交
59 60
constexpr size_t kGradVarSuffixSize = 5U;

61
/// Variables with this suffix are supposed to be filled up with zeros.
62
constexpr char kZeroVarSuffix[] = "@ZERO";
63

C
chengduo 已提交
64 65 66
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
67 68 69 70 71 72 73 74
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
75 76 77 78 79 80 81 82 83
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
84
// define some kernel priority
85
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
86 87
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

88
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
89 90 91 92 93
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
94 95
}

M
minqiyang 已提交
96
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
97
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
98 99 100 101 102
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
103 104
}

C
chengduo 已提交
105 106
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
107

Q
Qiao Longfei 已提交
108
class OperatorBase;
109
class ExecutionContext;
110

X
Xin Pan 已提交
111 112
class RuntimeContext {
 public:
X
Xin Pan 已提交
113 114
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
115

X
Xin Pan 已提交
116 117 118 119
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
120 121 122 123
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
124
/**
X
Xin Pan 已提交
125
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
126 127 128 129 130 131
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
132 133
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
134

Q
Qiao Longfei 已提交
135 136
  virtual ~OperatorBase() {}

137
  /// Executor will call this interface function to Run an op.
138 139
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
140

T
typhoonzero 已提交
141 142 143
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

144 145 146
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
147

148 149
  virtual bool SupportGPU() const { return false; }

150 151
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
152
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
153 154
  template <typename T>
  inline const T& Attr(const std::string& name) const {
155 156 157
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
158
    return BOOST_GET_CONST(T, attrs_.at(name));
159 160
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
161

Y
Yu Yang 已提交
162 163
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
164

S
sneaxiy 已提交
165
  const OpInfo& Info() const {
166 167 168
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
169 170 171
    return *info_;
  }

172
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
173
  //! Get a input with argument's name described in `op_proto`
174
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
175
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
176
  const std::vector<std::string>& Inputs(const std::string& name) const;
177
  //! Get all inputs variable names
Q
qijun 已提交
178 179
  std::vector<std::string> InputVars() const;

180
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
181
  //! Get a output with argument's name described in `op_proto`
182
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
183 184
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
185
  const std::vector<std::string>& Outputs(const std::string& name) const;
186
  //! Get all outputs variable names
Y
Yu Yang 已提交
187
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
188

189
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
190

B
baojun-nervana 已提交
191
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
192 193
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
194

Z
Zhang Ting 已提交
195 196 197 198 199
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
200
 protected:
Q
Qiao Longfei 已提交
201
  std::string type_;
D
dongzhihong 已提交
202
  // NOTE: in case of OpGrad, inputs_ contains:
203
  // I (Inputs)
D
dongzhihong 已提交
204 205
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
206
  VariableNameMap inputs_;
Y
Yu Yang 已提交
207

D
dongzhihong 已提交
208 209
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
210
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
211
  AttributeMap attrs_;
S
sneaxiy 已提交
212 213 214 215

  // OpInfo
  const OpInfo* info_;

216 217
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
218 219 220 221

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
222 223
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
224 225
};

226
class ExecutionContext {
Y
Yan Chunwei 已提交
227
 public:
228
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
229
                   const platform::DeviceContext& device_context,
230 231
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
232
  virtual ~ExecutionContext() {}
233

H
hong 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
254 255 256

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
257
  template <typename T>
Y
Yu Yang 已提交
258
  inline const T& Attr(const std::string& name) const {
259
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
260 261
  }

H
hong 已提交
262 263 264
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
265

H
hong 已提交
266
  virtual bool HasInput(const std::string& name) const;
267

H
hong 已提交
268
  virtual bool HasOutput(const std::string& name) const;
269

H
hong 已提交
270
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
271
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
272 273
  }

H
hong 已提交
274
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
275
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
276 277
  }

H
hong 已提交
278
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
279

H
hong 已提交
280
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
281

H
hong 已提交
282
  virtual const std::vector<Variable*> MultiInputVar(
283
      const std::string& name) const {
284 285
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
286 287 288 289
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
290
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
291 292
  }

H
hong 已提交
293
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
294 295 296 297 298 299 300
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
301 302 303 304 305 306 307 308 309 310 311
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

312 313
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
314
    auto* var = InputVar(name);
315
    return var == nullptr ? nullptr : &var->Get<T>();
316 317 318 319
  }

  template <typename T>
  T* Output(const std::string& name) const {
320
    auto var = OutputVar(name);
321
    return var == nullptr ? nullptr : var->GetMutable<T>();
322 323 324 325
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
326 327
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
328 329
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
330 331 332 333 334
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
335
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
336 337 338 339 340 341 342
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
343 344 345
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
346 347
      return {};
    }
H
hong 已提交
348

X
Xin Pan 已提交
349 350 351 352 353 354
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
355

X
Xin Pan 已提交
356 357 358
    return res;
  }

359
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
360

Q
QI JUN 已提交
361 362 363 364 365
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

366
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
367
    return device_context_;
Q
qijun 已提交
368
  }
Q
qijun 已提交
369

Q
QI JUN 已提交
370 371
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
372 373 374
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
375 376 377 378 379
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
380 381 382
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
383
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
384 385 386 387 388
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

389 390 391 392 393 394
    PADDLE_ENFORCE_GE(
        allocation_ptr->size(), framework::product(dim) * sizeof(T),
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
            allocation_ptr->size(), framework::product(dim) * sizeof(T)));
X
Xin Pan 已提交
395 396 397 398 399 400 401 402

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
403 404 405
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
H
hong 已提交
406

407
 private:
408 409
  const OperatorBase& op_;
  const Scope& scope_;
410
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
411
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
412 413
};

414 415 416 417 418 419 420 421 422 423 424 425 426 427
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
428
class OpKernelBase {
Q
qijun 已提交
429
 public:
Q
qijun 已提交
430
  /**
431
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
432 433
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
434
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
435 436
   */

437
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
438

Y
Yu Yang 已提交
439 440 441 442 443 444 445
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
446 447
};

Y
Yu Yang 已提交
448 449
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
450
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
451
  using OpKernelMap =
Y
yuyang18 已提交
452
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
453

Y
Yu Yang 已提交
454 455
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
456 457
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
458 459 460 461
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
462
  }
Y
Yan Chunwei 已提交
463

464 465 466 467 468
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

469
  bool SupportGPU() const override {
Y
Yu Yang 已提交
470 471 472 473 474
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
475 476
  }

477
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
478

X
Xin Pan 已提交
479 480
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
481

482 483 484
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

485
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
486

487 488
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
489 490 491
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
492

493 494
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
495 496 497
    return kernel_type_->place_;
  }

Y
Yu Yang 已提交
498
 private:
499 500
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
501
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
502
  // same.
503
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
504
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
505 506
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
507 508

  /**
T
tianshuo78520a 已提交
509 510
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
511 512 513 514
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
515 516 517 518
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
519 520 521 522

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
523

L
Liu Yiqun 已提交
524 525 526
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

527
 protected:
L
Liu Yiqun 已提交
528 529
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
530 531
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
532
  mutable bool need_prepare_data_ = true;
533 534
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
535
  mutable std::mutex cache_update_mutex_;
536
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
537 538
};

Y
Yu Yang 已提交
539 540
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
541 542
}  // namespace framework
}  // namespace paddle