operator.h 17.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33 34 35 36
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
41

Q
Qiao Longfei 已提交
42 43
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
44 45 46
namespace paddle {
namespace framework {

47
/// If a variable is a empty variable, that name will be used.
48
constexpr char kEmptyVarName[] = "@EMPTY@";
49 50 51

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
52
constexpr char kTempVarName[] = "@TEMP@";
53 54

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
55 56
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
57
constexpr char kGradVarSuffix[] = "@GRAD";
58

M
minqiyang 已提交
59 60
constexpr size_t kGradVarSuffixSize = 5U;

61
/// Variables with this suffix are supposed to be filled up with zeros.
62
constexpr char kZeroVarSuffix[] = "@ZERO";
63

C
chengduo 已提交
64 65 66
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

67 68 69
/// Variables with this suffix are the loaded from pre-train model.
constexpr char kLoadedVarSuffix[] = "@LOADED";

L
luotao1 已提交
70 71 72 73 74 75 76 77
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
78 79 80 81 82 83 84 85 86
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
87
// define some kernel priority
88
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
89 90
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

91
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
92 93 94 95 96
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
97 98
}

M
minqiyang 已提交
99
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
100
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
101 102 103 104 105
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
106 107
}

C
chengduo 已提交
108 109
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
110

Q
Qiao Longfei 已提交
111
class OperatorBase;
112
class ExecutionContext;
113

X
Xin Pan 已提交
114 115
class RuntimeContext {
 public:
X
Xin Pan 已提交
116 117
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
118

X
Xin Pan 已提交
119 120 121 122
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
123 124 125 126
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
127
/**
X
Xin Pan 已提交
128
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
129 130 131 132 133 134
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
135 136
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
137

Q
Qiao Longfei 已提交
138 139
  virtual ~OperatorBase() {}

140
  /// Executor will call this interface function to Run an op.
141 142
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
143

T
typhoonzero 已提交
144 145 146
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

147 148 149
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
150

151 152
  virtual bool SupportGPU() const { return false; }

153 154
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
155
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
156 157
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
158 159
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
160
    return BOOST_GET_CONST(T, attrs_.at(name));
161 162
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
163

Y
Yu Yang 已提交
164 165
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
166

S
sneaxiy 已提交
167 168 169 170 171
  const OpInfo& Info() const {
    PADDLE_ENFORCE_NOT_NULL(info_, "OpInfo of %s is not found", type_);
    return *info_;
  }

172
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
173
  //! Get a input with argument's name described in `op_proto`
174
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
175
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
176
  const std::vector<std::string>& Inputs(const std::string& name) const;
177
  //! Get all inputs variable names
Q
qijun 已提交
178 179
  std::vector<std::string> InputVars() const;

180
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
181
  //! Get a output with argument's name described in `op_proto`
182
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
183 184
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
185
  const std::vector<std::string>& Outputs(const std::string& name) const;
186
  //! Get all outputs variable names
Y
Yu Yang 已提交
187
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
188

189
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
190

B
baojun-nervana 已提交
191
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
192 193
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
194

Z
Zhang Ting 已提交
195 196 197 198 199
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
200
 protected:
Q
Qiao Longfei 已提交
201
  std::string type_;
D
dongzhihong 已提交
202
  // NOTE: in case of OpGrad, inputs_ contains:
203
  // I (Inputs)
D
dongzhihong 已提交
204 205
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
206
  VariableNameMap inputs_;
Y
Yu Yang 已提交
207

D
dongzhihong 已提交
208 209
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
210
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
211
  AttributeMap attrs_;
S
sneaxiy 已提交
212 213 214 215

  // OpInfo
  const OpInfo* info_;

216 217
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
218 219 220 221

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
222 223
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
224 225
};

226
class ExecutionContext {
Y
Yan Chunwei 已提交
227
 public:
228
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
229
                   const platform::DeviceContext& device_context,
230 231
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
232
  virtual ~ExecutionContext() {}
233

H
hong 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
254 255 256

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
257
  template <typename T>
Y
Yu Yang 已提交
258
  inline const T& Attr(const std::string& name) const {
259
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
260 261
  }

H
hong 已提交
262 263 264
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
265

H
hong 已提交
266
  virtual bool HasInput(const std::string& name) const;
267

H
hong 已提交
268
  virtual bool HasOutput(const std::string& name) const;
269

H
hong 已提交
270
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
271
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
272 273
  }

H
hong 已提交
274
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
275
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
276 277
  }

H
hong 已提交
278
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
279

H
hong 已提交
280
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
281

H
hong 已提交
282
  virtual const std::vector<Variable*> MultiInputVar(
283
      const std::string& name) const {
284 285
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
286 287 288 289
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
290
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
291 292
  }

H
hong 已提交
293
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
294 295 296 297 298 299 300
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
301 302 303 304 305 306 307 308 309 310 311
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

312 313
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
314
    auto* var = InputVar(name);
315
    return var == nullptr ? nullptr : &var->Get<T>();
316 317 318 319
  }

  template <typename T>
  T* Output(const std::string& name) const {
320
    auto var = OutputVar(name);
321
    return var == nullptr ? nullptr : var->GetMutable<T>();
322 323 324 325
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
326 327
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
328 329
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
330 331 332 333 334
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
335
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
336 337 338 339 340 341 342
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
343 344 345
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
346 347
      return {};
    }
H
hong 已提交
348

X
Xin Pan 已提交
349 350 351 352 353 354
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
355

X
Xin Pan 已提交
356 357 358
    return res;
  }

359
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
360

Q
QI JUN 已提交
361 362 363 364 365
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

366
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
367
    return device_context_;
Q
qijun 已提交
368
  }
Q
qijun 已提交
369

Q
QI JUN 已提交
370 371
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
372
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true);
Q
QI JUN 已提交
373 374 375 376 377
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
378 379 380
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
381
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
382 383 384 385 386
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

387
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
388 389 390 391 392 393 394 395 396
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
397 398 399
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
H
hong 已提交
400

401
 private:
402 403
  const OperatorBase& op_;
  const Scope& scope_;
404
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
405
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
406 407
};

408 409 410 411 412 413 414 415 416 417 418 419 420 421
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
422
class OpKernelBase {
Q
qijun 已提交
423
 public:
Q
qijun 已提交
424
  /**
425
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
426 427
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
428
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
429 430
   */

431
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
432

Y
Yu Yang 已提交
433 434 435 436 437 438 439
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
440 441
};

Y
Yu Yang 已提交
442 443
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
444
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
445
  using OpKernelMap =
Y
yuyang18 已提交
446
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
447

Y
Yu Yang 已提交
448 449
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
450 451
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
452 453 454 455
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
456
  }
Y
Yan Chunwei 已提交
457

458 459 460 461 462
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

463
  bool SupportGPU() const override {
Y
Yu Yang 已提交
464 465 466 467 468
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
469 470
  }

471
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
472

X
Xin Pan 已提交
473 474
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
475

476 477 478
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

479
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
480

481 482
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
483 484 485
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
486

487 488
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
489 490 491
    return kernel_type_->place_;
  }

Y
Yu Yang 已提交
492
 private:
493 494
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
495
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
496
  // same.
497
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
498
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
499 500
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
501 502

  /**
T
tianshuo78520a 已提交
503 504
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
505 506 507 508
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
509 510 511 512
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
513 514 515 516

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
517

L
Liu Yiqun 已提交
518 519 520
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

521
 protected:
L
Liu Yiqun 已提交
522 523
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
524 525
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
526
  mutable bool need_prepare_data_ = true;
527 528
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
529
  mutable std::mutex cache_update_mutex_;
530
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
531 532
};

Y
Yu Yang 已提交
533 534
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
535 536
}  // namespace framework
}  // namespace paddle