op_test.py 92.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid.framework import _dygraph_tracer
33
import paddle.fluid.core as core
34
from paddle.fluid.framework import _in_eager_mode
35
from paddle.fluid.framework import _test_eager_guard
36 37 38
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
39
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
40 41 42 43 44
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
45
from paddle.fluid import unique_name
46 47 48 49 50 51 52
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
53
from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs
54 55


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


98 99 100 101 102 103 104 105
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


106 107 108 109
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
110
    for i in six.moves.xrange(len(prob)):
111 112 113 114
        prob[i] /= prob_sum[i]
    return prob


115 116
def get_numeric_gradient(place,
                         scope,
117 118 119
                         op,
                         inputs,
                         input_to_check,
120
                         output_names,
121
                         delta=0.005,
122
                         in_place=False):
123
    # FIXME: change this method by compile time concepts
124
    set_input(scope, op, inputs, place)
125 126

    def product(dim):
M
minqiyang 已提交
127
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
128 129

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
130 131
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
132
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
133
        tensor_to_check_dtype = np.float32
134
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
135
        tensor_to_check_dtype = np.float64
136 137 138 139
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
140 141
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
142 143 144 145
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
146
    else:
147 148
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
149

150 151 152 153
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
154
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
155 156 157
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
158 159 160
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
161 162
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

163 164 165
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
166 167 168 169
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
170 171 172
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
173 174 175 176
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
177
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
178
            return tensor._get_float_element(i)
179
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
180
            return tensor._get_double_element(i)
181 182 183
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
184 185

    def __set_elem__(tensor, i, e):
186 187 188 189 190
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
191
            numpy_tensor = numpy_tensor.reshape(shape)
192
            tensor.set(numpy_tensor, place)
193 194 195 196 197 198 199
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
200
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
201
            tensor._set_float_element(i, e)
202
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
203
            tensor._set_double_element(i, e)
204 205 206
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
207

208 209
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
210
    for i in six.moves.xrange(tensor_size):
211
        if in_place:
212
            set_input(scope, op, inputs, place)
213 214

        # get one input element throw it's index i.
215
        origin = __get_elem__(tensor_to_check, i)
216 217
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
218
        __set_elem__(tensor_to_check, i, x_pos)
219 220 221
        y_pos = get_output()

        if in_place:
222
            set_input(scope, op, inputs, place)
223 224

        x_neg = origin - delta
225
        __set_elem__(tensor_to_check, i, x_neg)
226 227
        y_neg = get_output()

228
        __set_elem__(tensor_to_check, i, origin)
229 230
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
231
    return gradient_flat.reshape(tensor_to_check.shape())
232 233


234 235
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
236

237
       Check_grad is required for Op test cases. However, there are some special
238
       cases that do not need to do check_grad. This decorator is used to skip the
239
       check_grad of the above cases.
240 241

       Note: the execution of unit test will not be skipped. It just avoids check_grad
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


258 259 260 261
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


262 263 264 265
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

266 267 268
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
269
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
270

271 272 273
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
274 275


276 277 278
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
279
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
280 281
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
282 283


284
class OpTest(unittest.TestCase):
285 286 287 288 289
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
290
        cls.call_once = False
291
        cls.dtype = None
292
        cls.outputs = {}
293
        cls.input_shape_is_large = True
294 295 296 297

        np.random.seed(123)
        random.seed(124)

298 299 300 301
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
302

303 304
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
305
        """Restore random seeds"""
306 307 308
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

309 310
        _set_use_system_allocator(cls._use_system_allocator)

311 312 313 314
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
315
                if is_mkldnn_op_test():
316 317 318 319 320 321 322 323
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

324 325 326
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

327
        def is_mkldnn_op_test():
328
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
329

330 331 332
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

333 334 335
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

336 337 338
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

339 340
        if not hasattr(cls, "op_type"):
            raise AssertionError(
341 342
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
343

J
juncaipeng 已提交
344 345
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
346
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
347
            if cls.dtype is None or \
348 349
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
350 351 352 353
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

354
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
355 356
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
357
                and not hasattr(cls, 'exist_fp64_check_grad') \
358
                and not is_xpu_op_test() \
359
                and not is_mkldnn_op_test() \
360
                and not is_rocm_op_test() \
361 362
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
363 364 365 366
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

367
            if not cls.input_shape_is_large \
368 369 370 371
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
372

373 374 375 376 377
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

378
    def is_bfloat16_op(self):
379 380
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
381
        return self.dtype == np.uint16 or (
382 383 384
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
385
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
386 387 388 389 390 391 392 393 394 395 396 397 398
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
399

400
    # set the self.output_dtype .
401
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
402 403 404 405
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
406 407 408
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
431 432
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
433 434
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
435 436 437
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
438 439 440
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
441
            if dtype in input_dtype_set:
442 443
                self.dtype = dtype
                break
444
        # save input dtype in class attr
445
        self.__class__.dtype = self.dtype
446

447 448 449 450 451 452 453 454
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

455 456 457 458 459 460
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
461
                    if isinstance(np_value, tuple):
462
                        tensor.set(np_value[0], place)
463
                        tensor.set_recursive_sequence_lengths(np_value[1])
464
                    else:
465
                        tensor.set(np_value, place)
466 467 468 469
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
470
                    tensor.set(self.inputs[var_name][0], place)
471 472
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
473
                else:
474
                    tensor.set(self.inputs[var_name], place)
475 476 477
                feed_map[var_name] = tensor
        return feed_map

478
    def _append_ops(self, block):
479
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
480
        if self.is_mkldnn_op():
481
            self.__class__.use_mkldnn = True
482

483
        if self.is_xpu_op():
484 485
            self.__class__.use_xpu = True

486
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
487
        "infer datatype from inputs and outputs for this test case"
488 489 490 491 492 493
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
494 495 496 497
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
498 499 500 501 502 503 504 505 506

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

507 508 509 510
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
511
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
512
        # infer variable type and infer shape in compile-time
513 514
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
515

516 517
        return op

518 519
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
520
        for name, value in six.iteritems(numpy_inputs):
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
540 541 542 543
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
544
            v = fluid.dygraph.base.to_variable(value=data)
545
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
546 547
            return v
        else:
548
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

604 605 606 607 608 609 610 611 612 613 614 615 616
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
617

618 619
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
620 621 622
                    if _in_eager_mode():
                        v.retain_grads()

623
                if has_lod:
624
                    v.value().get_tensor().set_recursive_sequence_lengths(
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            self.assertTrue(
                np.allclose(
                    np_api, np_dyg, equal_nan=False),
                "Output (" + name + ") has diff at " + str(place) + "\nExpect "
                + str(np_dyg) + "\n" + "But Got" + str(np_api) + " in class " +
                self.__class__.__name__)

    def _calc_python_api_output(self, place):
702
        def prepare_python_api_arguments(api, op_proto_ins, op_proto_attrs,
703 704 705
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
            """
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

            def get_default(idx, all_params_number, defaults):
                related_idx = idx - all_params_number + len(defaults)
                assert related_idx >= 0, "%d-th arguments don't have default value" % idx
                return defaults[related_idx]

            def remove_name(x):
                if isinstance(x, list): return [i for i in x if i != 'name']
                if isinstance(x, dict):
                    return {k: v for k, v in x.items() if k != 'name'}
                assert False, "Only support list or dict."

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

727 728
            # NOTE(xiongkun): why don't use input arguments dicts ? 
            # Because we don't know the python api name of each arguments.
729 730 731 732 733
            # using parse_arg_and_kwargs, we can get the all api information we need.
            api_params, api_defaults = [
                remove_name(item) for item in parse_arg_and_kwargs(api)
            ]
            api_defaults = to_defaults_list(api_params, api_defaults)
734
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
            inputs_and_attrs = inputs_sig + attrs_sig
            assert (
                len(api_params) == len(inputs_and_attrs)
            ), "inputs and attrs length must equals to python api length. (May be output is in argument list?)"
            input_arguments = [op_proto_ins[name] for name in inputs_sig] + [
                op_proto_attrs[name] if name in op_proto_attrs else Empty()
                for name in attrs_sig
            ]
            results = []
            for idx, arg in enumerate(input_arguments):
                if is_empty(arg):
                    results.append(
                        get_default(idx, len(input_arguments), api_defaults))
                else:
                    results.append(arg)
            return results
751 752 753 754 755 756 757 758 759

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
            assert len(output_sig) == len(
                ret_tuple), "expect %d outputs, but get %d outputs" % (
                    len(output_sig), len(ret_tuple))
            return {a: b for a, b in zip(output_sig, ret_tuple)}

760
        def assumption_assert_and_transform(args, inp_num):
761
            """
762
            transform inputs by the following rules:
763 764 765 766
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors

            only support "X" is list of Tensor, currently don't support other structure like dict.
767
            """
768
            for inp in args[:inp_num]:
769 770 771
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
772 773 774 775
            args = [
                inp[0] if len(inp) == 1 else inp for inp in args[:inp_num]
            ] + args[inp_num:]
            return args
776

777
        def cal_python_api(python_api, args, kernel_sig):
778
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
779 780
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

            kernel_sig = _dygraph_tracer()._get_kernel_signature(
                self.op_type, inputs, outputs, attrs_outputs)

            assert hasattr(
                self, "python_api"
            ), "Please set the `self.python_api` if you want to compare python api output."
806 807
            args = prepare_python_api_arguments(self.python_api, inputs,
                                                attrs_outputs, kernel_sig)
808 809
            """ we directly return the cal_python_api value because the value is already tensor. 
            """
810
            return cal_python_api(self.python_api, args, kernel_sig)
811

812
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
813
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
814
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
815 816
            block = fluid.default_main_program().global_block()

817
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
818

819 820 821
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
822
            # prepare output variable
823 824 825 826 827 828 829 830 831
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
832

M
minqiyang 已提交
833 834 835 836
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
837
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
838
            return outputs
839

840 841 842 843 844 845
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
846
                     for_inplace_test=None):
847 848
        program = Program()
        block = program.global_block()
849
        op = self._append_ops(block)
850 851 852 853 854

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

855
        if for_inplace_test:
856 857
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
858 859
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
860 861
            for out_name in op.output_arg_names:
                var = block.var(out_name)
862 863
                if 0 in var.shape:
                    var.persistable = True
864
        original_program = program
865 866
        if parallel:
            use_cuda = False
867
            if isinstance(place, fluid.CUDAPlace):
868
                use_cuda = True
869 870 871
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
872 873 874 875
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
876
            for var_name, var in six.iteritems(outputs):
877 878
                if no_check_set is not None and var_name in no_check_set:
                    continue
879 880
                if isinstance(var, list):
                    for v in var:
881
                        fetch_list.append(v.name)
882
                else:
883
                    fetch_list.append(var.name)
884 885 886 887
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
888 889 890 891 892 893 894 895 896

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

897
        executor = Executor(place)
898 899 900 901
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
902 903
        self.op = op
        self.program = original_program
904 905 906 907
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
908

909 910 911 912 913 914 915 916 917
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
918
            place (CPUPlace | CUDAPlace): The place where the op runs.
919 920 921 922 923 924 925 926 927 928
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
929
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
930 931 932
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
933 934
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
935 936 937
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
938
                        expect_out, actual_out, atol=inplace_atol),
939 940
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
941 942
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
943 944
            else:
                self.assertTrue(
945
                    np.array_equal(expect_out, actual_out),
946 947
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
948 949
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
950 951 952 953 954 955 956 957

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
958
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

985 986
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
1002
            place (CPUPlace | CUDAPlace): The place where the op runs.
1003 1004 1005
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
1006
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
1038

1039
        Args:
1040 1041
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1042
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
1058
                # get grad_op_desc
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1082
        """Check the inplace correctness of given op (self.op_type).
1083
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
1084

1085
        Args:
1086
            place (CPUPlace | CUDAPlace): The place where the op runs.
1087 1088 1089 1090
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
1091 1092
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1093 1094
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
1105
        # compare expect_outs and actual_outs
1106 1107 1108 1109 1110 1111
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
1125
            place (CPUPlace | CUDAPlace): The place where the op runs.
1126 1127 1128 1129 1130 1131 1132 1133 1134
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1135
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1136
                                                                  set(), [])
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1162
        """Check the inplace correctness of given grad_op_desc.
1163 1164 1165 1166 1167 1168

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
1169
            place (CPUPlace | CUDAPlace): The place where the op runs.
1170 1171 1172 1173 1174 1175
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
1176 1177
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
1201
            place (CPUPlace | CUDAPlace): The place where the op runs.
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1217 1218
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1232 1233
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1234
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1247
                else:
1248 1249
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1250

1251 1252
    def check_output_with_place(self,
                                place,
1253
                                atol=0,
1254
                                no_check_set=None,
M
minqiyang 已提交
1255
                                equal_nan=False,
1256
                                check_dygraph=True,
1257 1258
                                inplace_atol=None,
                                check_eager=False):
1259 1260 1261 1262 1263
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1264
        if self.is_bfloat16_op():
1265 1266
            if self.is_mkldnn_op():
                check_dygraph = False
1267
                check_eager = False
1268 1269 1270 1271 1272
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1273
            else:
1274
                atol = 1e-1
1275

1276 1277 1278 1279
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1280

1281 1282
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1283
                place, no_check_set=no_check_set)
1284

1285 1286 1287 1288 1289
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_outs = self._calc_dygraph_output(
                    place, no_check_set=no_check_set)
            # we only check end2end api when check_eager=True
1290 1291 1292 1293 1294
            if hasattr(self, "python_api"):
                api_outs = self._calc_python_api_output(place)
                self._check_api_outs_by_dygraph_outs(api_outs, dygraph_outs,
                                                     place)

1295
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1296

1297
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1298 1299
            if out_name not in self.outputs:
                continue
1300 1301
            if no_check_set is not None and out_name in no_check_set:
                continue
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

1315 1316
            def find_actual(target_name, fetch_list):
                found = [
1317 1318
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
1319 1320 1321 1322 1323 1324
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1325 1326
            if out_dup:
                sub_out = self.outputs[out_name]
1327 1328 1329
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1330 1331
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
1332
                    if check_dygraph:
1333 1334
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1335 1336
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
1337 1338 1339 1340 1341 1342 1343
                    if check_eager:
                        with _test_eager_guard():
                            eager_imperative_actual = find_imperative_actual(
                                sub_out_name, eager_dygraph_outs, place)
                            eager_imperative_actual_t = eager_imperative_actual.numpy(
                            )

1344
                    idx = find_actual(sub_out_name, fetch_list)
1345 1346
                    actual = outs[idx]
                    actual_t = np.array(actual)
1347 1348
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1349 1350
                    self.assertTrue(
                        np.allclose(
1351
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
1352 1353
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
1354
                    if check_dygraph:
M
minqiyang 已提交
1355 1356 1357 1358 1359 1360 1361
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
1362
                            str(place) + " in dygraph mode")
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
                    if check_eager:
                        with _test_eager_guard():
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    equal_nan=equal_nan),
                                "Output (" + sub_out_name + ") has diff at " +
                                str(place) + " in eager dygraph mode")
1373 1374
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1375 1376
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
1377
                            ") has different lod at " + str(place))
1378 1379
                        if check_dygraph:
                            self.assertListEqual(
1380
                                imperative_actual.value().get_tensor()
1381 1382 1383 1384
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1385 1386 1387 1388 1389 1390 1391 1392
                        if check_eager:
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1393
            else:
1394
                if check_dygraph:
1395 1396
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1397 1398
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
1399 1400 1401 1402 1403 1404 1405
                if check_eager:
                    with _test_eager_guard():
                        eager_imperative_actual = find_imperative_actual(
                            out_name, eager_dygraph_outs, place)
                        eager_imperative_actual_t = eager_imperative_actual.numpy(
                        )

1406
                idx = find_actual(out_name, fetch_list)
1407 1408
                actual = outs[idx]
                actual_t = np.array(actual)
1409

1410
                expect = self.outputs[out_name]
1411
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1412

1413
                # np.uint16 represents bfloat16
1414 1415 1416
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1417
                    actual_t = convert_uint16_to_float(actual_t)
1418 1419 1420
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1421

1422 1423 1424 1425
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
1426

1427 1428 1429 1430 1431
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1432 1433
                self.assertTrue(
                    np.allclose(
1434 1435 1436
                        actual_t,
                        expect_t,
                        atol=atol,
1437
                        rtol=rtol,
1438
                        equal_nan=equal_nan),
E
emailweixu 已提交
1439
                    "Output (" + out_name + ") has diff at " + str(place) +
1440
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1441
                    str(actual_t) + " in class " + self.__class__.__name__)
1442
                if check_dygraph:
1443 1444 1445 1446 1447 1448
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
1460
                                rtol=rtol,
1461 1462 1463 1464 1465
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                if check_eager:
                    with _test_eager_guard():
                        if self.is_bfloat16_op():
                            if eager_imperative_actual_t.dtype == np.uint16:
                                eager_imperative_actual_t = convert_uint16_to_float(
                                    eager_imperative_actual_t)
                            if expect_t.dtype == np.uint16:
                                expect_t = convert_uint16_to_float(expect_t)
                        if six.moves.reduce(lambda x, y: x * y,
                                            eager_imperative_actual_t.shape,
                                            1) == 0 and six.moves.reduce(
                                                lambda x, y: x * y,
                                                expect_t.shape, 1) == 0:
                            pass
                        else:
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    rtol=rtol,
                                    equal_nan=equal_nan),
                                "Output (" + out_name + ") has diff at " +
                                str(place) + "\nExpect " + str(expect_t) + "\n"
                                + "But Got" + str(eager_imperative_actual_t) +
                                " in class " + self.__class__.__name__)
1492
                if isinstance(expect, tuple):
1493 1494
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1495
                                         ") has different lod at " + str(place))
1496
                    if check_dygraph:
M
minqiyang 已提交
1497
                        self.assertListEqual(
1498
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1499 1500
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
1501 1502 1503 1504 1505 1506 1507 1508 1509
                            str(place) + " in eager dygraph mode")
                    if check_eager:
                        with _test_eager_guard():
                            self.assertListEqual(
                                eager_imperative_actual.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in eager dygraph mode")
1510

1511
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
1512 1513
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
1514
        # computation order when multiple threads write the same address. So the
1515 1516 1517
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1518 1519
        if inplace_atol is not None:
            warnings.warn(
1520 1521
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1522
        # Check inplace for given op, its grad op, its grad_grad op, etc.
1523
        # No effect on original OpTest
1524
        # Currently not support ParallelExecutor on XPUPlace.
1525
        if not paddle.is_compiled_with_xpu(
1526 1527
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1528 1529
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1530

1531 1532 1533
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1581
    def _get_places(self):
1582 1583 1584 1585 1586 1587
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1588 1589
                else:
                    return []
1590 1591
            else:
                return []
1592
        places = [fluid.CPUPlace()]
1593 1594 1595
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
1596
            places.append(core.CUDAPlace(0))
1597 1598
        return places

M
minqiyang 已提交
1599 1600 1601 1602
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1603
                     check_dygraph=True,
1604 1605
                     inplace_atol=None,
                     check_eager=False):
1606
        self.__class__.op_type = self.op_type
1607
        if self.is_mkldnn_op():
1608
            self.__class__.use_mkldnn = True
1609

1610
        if self.is_xpu_op():
1611 1612
            self.__class__.use_xpu = True

1613
        places = self._get_places()
Q
qijun 已提交
1614
        for place in places:
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1627 1628 1629
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1630
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1631
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1632

1633
    def check_output_customized(self, checker, custom_place=None):
1634
        places = self._get_places()
1635 1636
        if custom_place:
            places.append(custom_place)
1637 1638 1639
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1640
            outs.sort(key=len)
1641 1642
            checker(outs)

1643 1644 1645 1646 1647 1648
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1649 1650
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1651
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1652 1653 1654 1655 1656 1657
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1658
            abs_a = np.abs(a)
1659 1660 1661 1662 1663
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1664 1665
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1666 1667
            else:
                abs_a[abs_a < 1e-3] = 1
1668 1669 1670 1671 1672 1673

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1674 1675 1676
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1677
                    offset, a.flatten()[offset], b.flatten()[offset])
1678 1679 1680

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1681 1682 1683 1684 1685 1686 1687
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1688 1689
    def check_grad(self,
                   inputs_to_check,
1690
                   output_names,
1691
                   no_grad_set=None,
1692
                   numeric_grad_delta=0.005,
1693
                   in_place=False,
1694
                   max_relative_error=0.005,
1695
                   user_defined_grads=None,
1696
                   user_defined_grad_outputs=None,
1697 1698
                   check_dygraph=True,
                   check_eager=False):
1699
        self._check_grad_helper()
1700
        places = self._get_places()
1701
        for place in places:
1702
            self.check_grad_with_place(
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1714 1715 1716 1717 1718 1719 1720 1721 1722

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1723
                              user_defined_grads=None,
1724
                              user_defined_grad_outputs=None,
1725
                              check_dygraph=True,
1726 1727
                              numeric_place=None,
                              check_eager=False):
1728
        self.scope = core.Scope()
Q
qijun 已提交
1729
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1730
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1731
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
1732

1733 1734
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1735
            check_dygraph = False
1736
            check_eager = False
1737

1738 1739 1740 1741
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1742

1743 1744 1745
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1746 1747 1748 1749 1750 1751 1752

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

1753 1754 1755 1756 1757 1758 1759
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
1760

1761 1762 1763
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1764 1765
        if no_grad_set is None:
            no_grad_set = set()
1766 1767
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1768 1769 1770
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1771 1772
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1773

1774 1775 1776 1777 1778 1779 1780 1781
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

1782 1783 1784
        if not type(output_names) is list:
            output_names = [output_names]

1785 1786 1787
        if numeric_place is None:
            numeric_place = place

1788
        numeric_grads = user_defined_grads or [
1789
            get_numeric_gradient(
1790
                numeric_place,
1791 1792 1793 1794
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
1795
                output_names,
1796
                delta=numeric_grad_delta,
1797
                in_place=in_place) for input_to_check in inputs_to_check
1798
        ]
1799
        analytic_grads = self._get_gradient(inputs_to_check, place,
1800 1801
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1802 1803
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1804
        fp32_analytic_grads = []
1805 1806 1807
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1808
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1809 1810 1811 1812 1813 1814 1815
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1816
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1817 1818
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1819

D
Dun 已提交
1820 1821 1822
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1823

1824
        if check_dygraph:
1825 1826 1827
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1828 1829 1830 1831
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1832
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1833 1834
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1835 1836 1837 1838
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check, place, output_names,
                    user_defined_grad_outputs, no_grad_set)
                fp32_grads = []
                for grad in eager_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                    fp32_grads.append(grad)
                eager_dygraph_grad = fp32_grads
                self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                      inputs_to_check, max_relative_error,
                                      "Gradient Check On %s" % str(place))

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1868
                          user_defined_grad_outputs=None,
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1889

1890 1891 1892 1893 1894 1895
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1911 1912 1913 1914 1915
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1950
                    block.append_op(
1951 1952 1953
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1954
                        attrs=None)
1955
                    loss = block.create_var(
1956 1957 1958
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1959 1960
                        stop_gradient=False,
                        shape=[1])
1961
                    block.append_op(
1962 1963 1964 1965
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
1966

1967
                loss.backward()
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1981 1982 1983 1984
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
                if _in_eager_mode():
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
2000

2001 2002 2003 2004 2005
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2006
            tensor.set_recursive_sequence_lengths(lod)
2007 2008
        return tensor

K
Kexin Zhao 已提交
2009
    @staticmethod
K
Kexin Zhao 已提交
2010 2011
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2012

2013 2014 2015 2016 2017 2018 2019 2020
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2021 2022 2023 2024 2025
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
2026
                      user_defined_grad_outputs=None,
2027
                      parallel=False):
2028
        prog = Program()
2029
        scope = core.Scope()
2030
        block = prog.global_block()
2031
        self._append_ops(block)
2032

2033
        inputs = self._get_inputs(block)
2034
        outputs = self._get_outputs(block)
2035
        feed_dict = self.feed_var(inputs, place)
2036

2037
        if user_defined_grad_outputs is None:
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2078
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2079 2080 2081 2082
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2083 2084
        if parallel:
            use_cuda = False
2085
            if isinstance(place, fluid.CUDAPlace):
2086
                use_cuda = True
2087 2088 2089 2090
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2091 2092
        return list(
            map(np.array,
2093 2094 2095 2096 2097
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
2111 2112 2113 2114 2115 2116

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")
新手
引导
客服 返回
顶部