op_test.py 53.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import time
24
import itertools
Y
Yu Yang 已提交
25
import collections
M
minqiyang 已提交
26
from collections import defaultdict
27 28 29

import paddle.fluid as fluid
import paddle.fluid.core as core
30 31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
33
from paddle.fluid.framework import Program, OpProtoHolder, Variable
34
from testsuite import create_op, set_input, append_input_output, append_loss_ops
35
from paddle.fluid import unique_name
36 37


38 39 40 41 42 43 44 45
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


46 47 48 49
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
50
    for i in six.moves.xrange(len(prob)):
51 52 53 54
        prob[i] /= prob_sum[i]
    return prob


55 56
def get_numeric_gradient(place,
                         scope,
57 58 59
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
60
                         output_names,
61
                         delta=0.005,
C
chengduo 已提交
62
                         in_place=False):
Y
Yu Yang 已提交
63
    # FIXME: change this method by compile time concepts
64
    set_input(scope, op, inputs, place)
65 66

    def product(dim):
M
minqiyang 已提交
67
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
68 69

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
70 71
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
72
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
73
        tensor_to_check_dtype = np.float32
74
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
75
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
76 77 78 79
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
80 81 82 83
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
84 85 86 87 88 89 90 91 92
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

93 94 95
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
96 97 98 99 100
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
101
            return tensor._get_float_element(i)
102
        else:
Y
yuyang18 已提交
103
            return tensor._get_double_element(i)
104 105

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
106 107 108 109 110
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
111
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
112 113
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
114
            tensor._set_float_element(i, e)
115
        else:
Y
yuyang18 已提交
116
            tensor._set_double_element(i, e)
117

118 119
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
120
    for i in six.moves.xrange(tensor_size):
121
        if in_place:
122
            set_input(scope, op, inputs, place)
123 124

        # get one input element throw it's index i.
125
        origin = __get_elem__(tensor_to_check, i)
126 127
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
128
        __set_elem__(tensor_to_check, i, x_pos)
129 130 131
        y_pos = get_output()

        if in_place:
132
            set_input(scope, op, inputs, place)
133 134

        x_neg = origin - delta
135
        __set_elem__(tensor_to_check, i, x_neg)
136 137
        y_neg = get_output()

138
        __set_elem__(tensor_to_check, i, origin)
139 140
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
141
    return gradient_flat.reshape(tensor_to_check.shape())
142 143 144


class OpTest(unittest.TestCase):
145 146 147 148 149
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
150 151 152
        cls.call_once = False
        cls.dtype = "float32"
        cls.outputs = {}
153 154 155 156

        np.random.seed(123)
        random.seed(124)

157 158
        cls._use_system_allocator = _set_use_system_allocator(True)

159 160
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
161
        """Restore random seeds"""
162 163 164
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

165 166
        _set_use_system_allocator(cls._use_system_allocator)

167 168 169 170 171 172 173 174 175 176
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def infer_dtype(numpy_dict):
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
M
minqiyang 已提交
177
            for var_name, var_value in six.iteritems(numpy_dict):
178 179 180 181 182 183 184 185 186 187 188 189 190 191
                if isinstance(var_value, (np.ndarray, np.generic)):
                    self.try_call_once(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):
                    # the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
                    if len(var_value) > 1 and isinstance(var_value[1], (
                            np.ndarray, np.generic)):
                        instance = var_value[1]
                        self.try_call_once(instance[1].dtype)
                else:
                    self.try_call_once("float32")

        infer_dtype(inputs)
        infer_dtype(outputs)

Y
Yang Yang(Tony) 已提交
192 193 194 195 196 197
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
198
                    if isinstance(np_value, tuple):
199
                        tensor.set(np_value[0], place)
200
                        tensor.set_recursive_sequence_lengths(np_value[1])
201
                    else:
202
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
203 204 205 206
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
207
                    tensor.set(self.inputs[var_name][0], place)
208 209
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
210
                else:
211
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
212 213 214 215
                feed_map[var_name] = tensor

        return feed_map

216
    def _append_ops(self, block):
Y
Yang Yang(Tony) 已提交
217
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
218 219 220 221 222 223
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
224 225 226 227 228 229 230 231 232

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
233 234 235 236 237
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
238
        # infer variable type and infer shape in compile-time 
Q
QI JUN 已提交
239 240
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
241

242 243
        return op

244 245
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
246
        for name, value in six.iteritems(numpy_inputs):
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
266 267 268 269
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
270
            v = fluid.dygraph.base.to_variable(value=data)
M
minqiyang 已提交
271 272 273
            v._ivar.value().get_tensor().set_recursive_sequence_lengths(lod)
            return v
        else:
L
lujun 已提交
274
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
275

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
                    v._ivar.value().get_tensor().set_recursive_sequence_lengths(
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
354 355
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
356 357
            block = fluid.default_main_program().global_block()

358
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
359

360 361 362
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
363 364

            # prepare output variable
365 366 367 368 369 370 371 372 373
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
374 375 376 377
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
378
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
379
            return outputs
380

381 382 383 384 385 386
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
387
                     for_inplace_test=None):
388 389
        program = Program()
        block = program.global_block()
390
        op = self._append_ops(block)
391 392 393 394 395

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

396
        if for_inplace_test:
397 398 399 400
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
401 402
            for out_name in op.output_arg_names:
                var = block.var(out_name)
403 404
                if 0 in var.shape:
                    var.persistable = True
405
        original_program = program
406 407
        if parallel:
            use_cuda = False
408
            if isinstance(place, fluid.CUDAPlace):
409
                use_cuda = True
410 411 412
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
413 414 415 416
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
417
            for var_name, var in six.iteritems(outputs):
418 419
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
420 421
                if isinstance(var, list):
                    for v in var:
422
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
423
                else:
424
                    fetch_list.append(var.name)
425 426 427 428
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
429 430 431 432 433 434 435 436 437

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

438
        executor = Executor(place)
439 440 441 442
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
443 444
        self.op = op
        self.program = original_program
445 446 447 448
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
                        np.array(expect_outs[i]),
                        np.array(actual_outs[i]),
                        atol=inplace_atol),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__)
            else:
                self.assertTrue(
                    np.array_equal(
                        np.array(expect_outs[i]), np.array(actual_outs[i])),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__ + '\n')

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op. 

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op. 

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
        
        Args:
            op_desc (OpDesc): The op_desc of current op. 
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op. 
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
            
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc 
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
        """Chech the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
        
        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
633 634 635 636 637 638 639 640 641 642
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
643
        # compare expect_outs and actual_outs
644 645 646 647 648 649
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
673
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
674
                                                                  set(), [])
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
        """Chech the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn/ngraph
                # skip op that use_mkldnn and use_ngraph currently
770
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
771 772 773 774 775 776 777 778 779
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                use_ngraph = fluid.core.is_compiled_with_ngraph(
780
                ) and fluid.core.globals()["FLAGS_use_ngraph"]
781 782 783 784 785 786 787 788 789
                if use_ngraph:
                    warnings.warn(
                        "check inplace_grad for ops using ngraph is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
790
                else:
791 792
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
793

794 795 796 797
    def check_output_with_place(self,
                                place,
                                atol,
                                no_check_set=None,
M
minqiyang 已提交
798
                                equal_nan=False,
799
                                check_dygraph=True,
800
                                inplace_atol=None):
L
lujun 已提交
801 802
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
803
                place, no_check_set=no_check_set)
804
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
805
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
806 807
            if out_name not in self.outputs:
                continue
808 809
            if no_check_set is not None and out_name in no_check_set:
                continue
810

811 812 813 814 815 816 817 818 819 820 821 822
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
823 824
            def find_actual(target_name, fetch_list):
                found = [
825 826
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
827 828 829 830 831 832
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

833 834
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
835 836 837
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
838 839
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
840
                    if check_dygraph:
841 842
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
M
minqiyang 已提交
843 844
                        imperative_actual_t = np.array(
                            imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
845
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
846 847
                    actual = outs[idx]
                    actual_t = np.array(actual)
848 849
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
850 851
                    self.assertTrue(
                        np.allclose(
852
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
853 854
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
855
                    if check_dygraph:
M
minqiyang 已提交
856 857 858 859 860 861 862
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
863
                            str(place) + " in dygraph mode")
864 865
                    if isinstance(expect, tuple):
                        self.assertListEqual(
866 867
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
868
                            ") has different lod at " + str(place))
869 870 871 872 873 874 875
                        if check_dygraph:
                            self.assertListEqual(
                                imperative_actual._ivar.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
876
            else:
L
lujun 已提交
877
                if check_dygraph:
878 879
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
M
minqiyang 已提交
880 881
                    imperative_actual_t = np.array(
                        imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
882
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
883 884
                actual = outs[idx]
                actual_t = np.array(actual)
885
                expect = self.outputs[out_name]
886
                expect_t = expect[0] if isinstance(expect, tuple) else expect
887 888
                self.assertTrue(
                    np.allclose(
889
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
890
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
891
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
892
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
893
                if check_dygraph:
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
910
                if isinstance(expect, tuple):
911 912
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
913
                                         ") has different lod at " + str(place))
L
lujun 已提交
914
                    if check_dygraph:
M
minqiyang 已提交
915 916
                        self.assertListEqual(
                            imperative_actual._ivar.value().get_tensor()
M
minqiyang 已提交
917 918
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
919
                            str(place) + " in dygraph mode")
920

921 922 923 924
        # inplace_atol only used when op doesn't ensure computational consistency
        if inplace_atol is not None:
            warnings.warn(
                "By default, inplace_atol should not be set, please check it")
925 926
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest 
927 928 929
        self.check_inplace_output_with_place(
            place, no_check_set=no_check_set, inplace_atol=inplace_atol)

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

978
    def _get_places(self):
D
dzhwinter 已提交
979 980 981 982 983 984
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
985 986
                else:
                    return []
D
dzhwinter 已提交
987 988
            else:
                return []
989
        places = [fluid.CPUPlace()]
990
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
991
        use_ngraph = fluid.core.is_compiled_with_ngraph(
992
        ) and fluid.core.globals()['FLAGS_use_ngraph']
B
baojun 已提交
993 994
        if use_ngraph:
            cpu_only = True
995 996
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
997
            places.append(core.CUDAPlace(0))
998 999
        return places

M
minqiyang 已提交
1000 1001 1002 1003
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1004
                     check_dygraph=True,
1005 1006
                     inplace_atol=None,
                     check_compile_vs_runtime=False):
1007
        places = self._get_places()
Q
qijun 已提交
1008
        for place in places:
1009 1010 1011 1012 1013 1014 1015 1016
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
            if check_compile_vs_runtime:
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1017

1018
    def check_output_customized(self, checker):
1019
        places = self._get_places()
1020 1021 1022
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1023
            outs.sort(key=len)
1024 1025
            checker(outs)

D
Dun 已提交
1026 1027
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
1028

M
minqiyang 已提交
1029
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1030 1031 1032 1033 1034 1035 1036 1037
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1038
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
1039 1040 1041
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
1042 1043 1044 1045 1046

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1047
                   output_names,
1048
                   no_grad_set=None,
1049
                   numeric_grad_delta=0.005,
1050
                   in_place=False,
Q
Qiao Longfei 已提交
1051
                   max_relative_error=0.005,
1052 1053
                   user_defined_grads=None,
                   check_dygraph=True):
1054
        places = self._get_places()
1055 1056 1057 1058
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
1059
                                       user_defined_grads, check_dygraph)
1060 1061 1062 1063 1064 1065 1066 1067 1068

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1069 1070
                              user_defined_grads=None,
                              check_dygraph=True):
1071
        self.scope = core.Scope()
Q
qijun 已提交
1072
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1073
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1074
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1086

1087 1088 1089
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
1090 1091 1092
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
1093
        numeric_grads = user_defined_grads or [
1094
            get_numeric_gradient(
1095
                place,
1096 1097 1098 1099
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1100
                output_names,
1101
                delta=numeric_grad_delta,
C
chengduo 已提交
1102
                in_place=in_place) for input_to_check in inputs_to_check
1103
        ]
1104 1105
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)
D
Dun 已提交
1106 1107 1108
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        if check_dygraph:
            dygraph_grad = self._get_dygraph_grad(inputs_to_check, place,
                                                  output_names, no_grad_set)
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

            if len(outputs_valid) == 1:
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                for outputs_valid_key in outputs_valid:
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[outputs_valid_key]},
                        outputs={"Out": [loss]},
                        attrs=None)
            else:
                avg_sum = []
                for cur_loss in outputs_valid:
                    cur_avg_loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False)
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[cur_loss]},
                        outputs={"Out": [cur_avg_loss]},
                        attrs=None)
                    avg_sum.append(cur_avg_loss)
                loss_sum = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='sum',
                    inputs={"X": avg_sum},
                    outputs={"Out": loss_sum},
                    attrs=None)
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='scale',
                    inputs={"X": loss_sum},
                    outputs={"Out": loss},
                    attrs={'scale': 1.0 / float(len(avg_sum))})
            loss.backward()

            fetch_list_grad = []
            for inputs_to_check_name in inputs_to_check:
                a = inputs_grad_dict[inputs_to_check_name].gradient()
                fetch_list_grad.append(a)
            return fetch_list_grad

Y
Yu Yang 已提交
1218 1219 1220 1221 1222
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1223
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1224 1225
        return tensor

K
Kexin Zhao 已提交
1226
    @staticmethod
K
Kexin Zhao 已提交
1227 1228
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1229

D
dzhwinter 已提交
1230 1231 1232 1233 1234 1235 1236 1237
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1238 1239 1240 1241 1242 1243
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
1244 1245
        prog = Program()
        block = prog.global_block()
1246 1247
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
1248
        param_grad_list = append_backward(
Y
Yu Yang 已提交
1249 1250
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

1251 1252
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1253 1254

        fetch_list = [g for p, g in param_grad_list]
1255 1256
        if parallel:
            use_cuda = False
1257
            if isinstance(place, fluid.CUDAPlace):
1258
                use_cuda = True
1259 1260 1261 1262
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1263 1264 1265
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))