op_test.py 20.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
import random
M
minqiyang 已提交
20
import six
21
import time
22
import itertools
Y
Yu Yang 已提交
23
import collections
24 25 26

import paddle.fluid as fluid
import paddle.fluid.core as core
27 28 29
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
30
from paddle.fluid.framework import Program, OpProtoHolder, Variable
31
from testsuite import create_op, set_input, append_input_output, append_loss_ops
32 33


34 35 36 37
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
38
    for i in six.moves.xrange(len(prob)):
39 40 41 42
        prob[i] /= prob_sum[i]
    return prob


43 44
def get_numeric_gradient(place,
                         scope,
45 46 47
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
48
                         output_names,
49
                         delta=0.005,
50 51
                         in_place=False,
                         sum_outputs=None):
Y
Yu Yang 已提交
52
    # FIXME: change this method by compile time concepts
53
    set_input(scope, op, inputs, place)
54 55

    def product(dim):
M
minqiyang 已提交
56
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
57 58

    def get_output():
Y
Yu Yang 已提交
59
        sum = []
C
chengduo 已提交
60
        op.run(scope, place)
Y
Yancey 已提交
61
        for output_name in output_names:
62 63
            if sum_outputs and output_name not in sum_outputs:
                continue
Y
Yu Yang 已提交
64 65
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
66
        return np.array(sum).sum() / len(output_names)
67 68

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
69 70
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
71
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
72
        tensor_to_check_dtype = np.float32
73
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
74
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
75 76 77 78
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
79 80 81 82 83 84 85
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
86 87 88 89 90
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
91
            return tensor._get_float_element(i)
92
        else:
Y
yuyang18 已提交
93
            return tensor._get_double_element(i)
94 95

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
96 97 98 99 100 101 102 103
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
            numpy_tensor = numpy_tensor.reshape(shape).view(np.uint16)
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
104
            tensor._set_float_element(i, e)
105
        else:
Y
yuyang18 已提交
106
            tensor._set_double_element(i, e)
107

108 109
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
110
    for i in six.moves.xrange(tensor_size):
111
        if in_place:
112
            set_input(scope, op, inputs, place)
113 114

        # get one input element throw it's index i.
115
        origin = __get_elem__(tensor_to_check, i)
116 117
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
118
        __set_elem__(tensor_to_check, i, x_pos)
119 120 121
        y_pos = get_output()

        if in_place:
122
            set_input(scope, op, inputs, place)
123 124

        x_neg = origin - delta
125
        __set_elem__(tensor_to_check, i, x_neg)
126 127
        y_neg = get_output()

128
        __set_elem__(tensor_to_check, i, origin)
129 130
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
131
    return gradient_flat.reshape(tensor_to_check.shape())
132 133 134


class OpTest(unittest.TestCase):
135 136 137 138 139
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
140 141 142
        cls.call_once = False
        cls.dtype = "float32"
        cls.outputs = {}
143 144 145 146 147 148

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
149
        """Restore random seeds"""
150 151 152
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

153 154 155 156
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type
D
dzhwinter 已提交
157 158 159 160 161
            # See the comment of np_dtype_to_fluid_dtype
            # If the input type is uint16, we assume use float16
            # for lodtensor dtype.
            if self.dtype == np.uint16:
                self.dtype == np.float16
162 163 164 165 166 167

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def infer_dtype(numpy_dict):
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
M
minqiyang 已提交
168
            for var_name, var_value in six.iteritems(numpy_dict):
169 170 171 172 173 174 175 176 177 178 179 180 181 182
                if isinstance(var_value, (np.ndarray, np.generic)):
                    self.try_call_once(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):
                    # the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
                    if len(var_value) > 1 and isinstance(var_value[1], (
                            np.ndarray, np.generic)):
                        instance = var_value[1]
                        self.try_call_once(instance[1].dtype)
                else:
                    self.try_call_once("float32")

        infer_dtype(inputs)
        infer_dtype(outputs)

Y
Yang Yang(Tony) 已提交
183 184 185 186 187 188
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
189
                    if isinstance(np_value, tuple):
D
dzhwinter 已提交
190 191
                        tensor.set(
                            OpTest.np_value_to_fluid_value(np_value[0]), place)
192
                        tensor.set_recursive_sequence_lengths(np_value[1])
193
                    else:
D
dzhwinter 已提交
194 195
                        tensor.set(
                            OpTest.np_value_to_fluid_value(np_value), place)
Y
Yang Yang(Tony) 已提交
196 197 198 199
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
D
dzhwinter 已提交
200 201 202
                    tensor.set(
                        OpTest.np_value_to_fluid_value(self.inputs[var_name][
                            0]), place)
203 204
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
205
                else:
D
dzhwinter 已提交
206 207 208
                    tensor.set(
                        OpTest.np_value_to_fluid_value(self.inputs[var_name]),
                        place)
Y
Yang Yang(Tony) 已提交
209 210 211 212
                feed_map[var_name] = tensor

        return feed_map

213
    def _append_ops(self, block):
Y
Yang Yang(Tony) 已提交
214
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
215 216 217 218 219 220
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
Y
Yang Yang(Tony) 已提交
221 222 223 224 225
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
226 227 228
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
229

230 231
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
232
        for name, value in six.iteritems(numpy_inputs):
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

    def _calc_output(self, place, parallel=False):

        program = Program()
        block = program.global_block()
        self._append_ops(block)

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

        if parallel:
            use_cuda = False
            if isinstance(place, fluid.CUDAPlace(0)):
                use_cuda = True
            executor = fluid.ParallelExecutor(
                use_cuda=use_cuda, loss_name=loss.name, main_program=program)
        else:
            executor = Executor(place)

        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
275
            for var_name, var in six.iteritems(outputs):
Y
Yang Yang(Tony) 已提交
276 277 278 279 280
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)
281 282 283 284 285
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
        # fetch_list = map(block.var, fetch_list)
W
Wu Yi 已提交
286
        if not isinstance(fetch_list[0], fluid.framework.Variable):
287
            fetch_list = list(map(block.var, fetch_list))
288 289 290 291
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
292
        return outs, fetch_list
Y
Yang Yang(Tony) 已提交
293

294 295
    def check_output_with_place(self, place, atol):
        outs, fetch_list = self._calc_output(place)
Y
Yang Yang(Tony) 已提交
296
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
297 298 299
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
300 301 302 303 304 305 306 307 308 309
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

310 311
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
312 313 314
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
315 316
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
Y
Yang Yang(Tony) 已提交
317
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
318 319
                    actual = outs[idx]
                    actual_t = np.array(actual)
320 321
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
322 323
                    self.assertTrue(
                        np.allclose(
324
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
325 326
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
327 328
                    if isinstance(expect, tuple):
                        self.assertListEqual(
329 330
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
331
                            ") has different lod at " + str(place))
332
            else:
Y
Yang Yang(Tony) 已提交
333
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
334 335
                actual = outs[idx]
                actual_t = np.array(actual)
336
                expect = self.outputs[out_name]
337
                expect_t = expect[0] if isinstance(expect, tuple) else expect
338 339
                self.assertTrue(
                    np.allclose(
340
                        actual_t, expect_t, atol=atol),
E
emailweixu 已提交
341
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
342 343
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
                    str(actual_t))
344
                if isinstance(expect, tuple):
345 346
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
347
                                         ") has different lod at " + str(place))
348

349
    def _get_places(self):
D
dzhwinter 已提交
350 351 352 353 354 355 356 357
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
            else:
                return []
358
        places = [fluid.CPUPlace()]
359
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type):
D
dzhwinter 已提交
360
            places.append(core.CUDAPlace(0))
361 362 363 364
        return places

    def check_output(self, atol=1e-5):
        places = self._get_places()
Q
qijun 已提交
365
        for place in places:
366
            self.check_output_with_place(place, atol)
Q
qijun 已提交
367

368
    def check_output_customized(self, checker):
369
        places = self._get_places()
370 371 372
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
373
            outs.sort(key=len)
374 375
            checker(outs)

376 377 378
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

M
minqiyang 已提交
379
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
380 381 382 383 384 385 386 387
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
388
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
389 390 391
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
392 393 394 395 396

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
397
                   output_names,
398
                   no_grad_set=None,
399
                   numeric_grad_delta=0.005,
400
                   in_place=False,
Q
Qiao Longfei 已提交
401
                   max_relative_error=0.005,
402 403
                   user_defined_grads=None,
                   sum_outputs=None):
404
        places = self._get_places()
405 406 407 408
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
409
                                       user_defined_grads, sum_outputs)
410 411 412 413 414 415 416 417 418

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
419 420
                              user_defined_grads=None,
                              sum_outputs=None):
421
        self.scope = core.Scope()
Q
qijun 已提交
422
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
423
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
424
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
425
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
426
                            op_attrs)
Y
Yu Yang 已提交
427

428 429 430
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
431 432 433
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
434
        numeric_grads = user_defined_grads or [
435
            get_numeric_gradient(
436
                place,
437 438 439 440
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
441
                output_names,
442
                delta=numeric_grad_delta,
443 444
                in_place=in_place,
                sum_outputs=sum_outputs) for input_to_check in inputs_to_check
445
        ]
446 447 448 449 450 451
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)

        self.__assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                               max_relative_error,
                               "Gradient Check On %s" % str(place))
Q
qijun 已提交
452

Y
Yu Yang 已提交
453 454 455 456 457
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
458
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
459 460
        return tensor

K
Kexin Zhao 已提交
461
    @staticmethod
K
Kexin Zhao 已提交
462 463
    def np_dtype_to_fluid_dtype(input):
        """Change the dtype of float16 numpy array
K
Kexin Zhao 已提交
464

465
        numpy float16 is binded to paddle::platform::float16
K
Kexin Zhao 已提交
466
        in tensor_py.h via the help of uint16 data type since
467
        the internal memory representation of float16 is
K
Kexin Zhao 已提交
468 469
        uint16_t in paddle and np.uint16 in numpy, which are
        themselves binded together by pybind.
K
Kexin Zhao 已提交
470 471 472 473 474

        Args:
            input: input numpy array

        Returns:
475
            input: The dtype of input will be changed to np.uint16 if
K
Kexin Zhao 已提交
476
                it is originally np.float16, such that the internal memory
477
                of input will be reinterpreted as of dtype np.uint16.
K
Kexin Zhao 已提交
478 479
        """
        if input.dtype == np.float16:
K
Kexin Zhao 已提交
480 481
            input.dtype = np.uint16
        return input
K
Kexin Zhao 已提交
482

D
dzhwinter 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        """
        See above, convert the dtype to normal type.
        """
        if dtype == np.uint16:
            dtype = np.float16
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        if input.dtype == np.float16:
            input = input.view(np.uint16)
        return input

498 499 500 501 502 503
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
504 505
        prog = Program()
        block = prog.global_block()
506 507
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
508
        param_grad_list = append_backward(
Y
Yu Yang 已提交
509 510
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

511 512
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
513 514

        fetch_list = [g for p, g in param_grad_list]
515 516 517 518 519
        if parallel:
            use_cuda = False
            if isinstance(place, fluid.CUDAPlace(0)):
                use_cuda = True
            executor = fluid.ParallelExecutor(
D
dzhwinter 已提交
520
                use_cuda=use_cuda, loss_name=loss.name, main_program=prog)
521 522
        else:
            executor = Executor(place)
523 524 525
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))