Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
375e5618
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
375e5618
编写于
7月 07, 2021
作者:
J
jakpiase
提交者:
GitHub
7月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Added PRelu BF16/FP32 FWD/BWD kernels (#33878)
* added prelu bf16/fp32 fwd/bwd kernel
上级
a0666b9d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
433 addition
and
12 deletion
+433
-12
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+20
-5
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
+187
-0
paddle/fluid/operators/prelu_op.cc
paddle/fluid/operators/prelu_op.cc
+34
-6
python/paddle/fluid/tests/unittests/mkldnn/test_prelu_mkldnn_op.py
...ddle/fluid/tests/unittests/mkldnn/test_prelu_mkldnn_op.py
+185
-0
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+6
-1
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
375e5618
...
...
@@ -2262,11 +2262,26 @@ PDNode *patterns::QuantizePlacement::operator()(
PDNode
*
patterns
::
Bfloat16Placement
::
operator
()(
const
std
::
unordered_set
<
std
::
string
>
&
bfloat16_enabled_op_types
)
{
std
::
unordered_set
<
std
::
string
>
supported_op_types
=
std
::
unordered_set
<
std
::
string
>
(
{
"concat"
,
"conv2d"
,
"conv2d_transpose"
,
"elementwise_add"
,
"elementwise_mul"
,
"fc"
,
"fusion_gru"
,
"fusion_lstm"
,
"gelu"
,
"layer_norm"
,
"matmul"
,
"matmul_v2"
,
"pool2d"
,
"relu"
,
"reshape2"
,
"softmax"
,
"split"
,
"sum"
,
"transpose2"
});
std
::
unordered_set
<
std
::
string
>
({
"concat"
,
"conv2d"
,
"conv2d_transpose"
,
"elementwise_add"
,
"elementwise_mul"
,
"fc"
,
"fusion_gru"
,
"fusion_lstm"
,
"gelu"
,
"layer_norm"
,
"matmul"
,
"matmul_v2"
,
"pool2d"
,
"prelu"
,
"relu"
,
"reshape2"
,
"softmax"
,
"split"
,
"sum"
,
"transpose2"
});
if
(
!
bfloat16_enabled_op_types
.
empty
())
{
supported_op_types
=
bfloat16_enabled_op_types
;
}
...
...
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
0 → 100644
浏览文件 @
375e5618
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace
paddle
{
namespace
operators
{
using
dnnl
::
memory
;
using
framework
::
Tensor
;
using
platform
::
GetMKLDNNFormat
;
using
platform
::
MKLDNNDeviceContext
;
using
platform
::
MKLDNNGetDataType
;
using
platform
::
to_void_cast
;
namespace
{
template
<
typename
T
>
class
PReluMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
prelu_forward
,
dnnl
::
prelu_backward
>
{
public:
PReluMKLDNNHandler
(
const
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
const
Tensor
*
weights
,
const
std
::
string
&
uniq_name
,
const
std
::
string
&
mode
,
bool
is_test
=
false
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
prelu_forward
,
dnnl
::
prelu_backward
>
(
dev_ctx
,
engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
x
->
dims
()),
uniq_name
))
{
if
(
!
this
->
isCached
())
{
auto
x_md
=
memory
::
desc
(
framework
::
vectorize
(
x
->
dims
()),
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
auto
weights_dims
=
framework
::
vectorize
(
weights
->
dims
());
// weights must have same size as X only for "element" case
if
(
weights
->
dims
().
size
()
!=
x
->
dims
().
size
())
{
auto
new_weights_dims
=
std
::
vector
<
int64_t
>
(
x
->
dims
().
size
(),
1
);
if
(
mode
==
"channel"
)
{
new_weights_dims
[
1
]
=
*
std
::
max_element
(
weights_dims
.
begin
(),
weights_dims
.
end
());
}
weights_dims
=
std
::
move
(
new_weights_dims
);
}
auto
weights_md
=
memory
::
desc
(
weights_dims
,
MKLDNNGetDataType
<
T
>
(),
memory
::
format_tag
::
any
);
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
x_md
,
weights_md
);
if
(
!
is_test
)
this
->
AcquireBackwardPrimitiveDescriptor
(
x_md
,
weights_md
,
x_md
,
weights_md
);
}
}
std
::
shared_ptr
<
memory
>
AcquireWeightsMemoryPossiblyWithReorder
(
const
Tensor
*
input
,
const
bool
is_test
)
{
const
T
*
input_data
=
input
->
data
<
T
>
();
// if weights are 1D, every format tag is correct, so we accept
// format_tag::any's output and no reorder is needed
if
(
input
->
dims
().
size
()
==
1
)
{
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
input_data
),
"@alpha_mem_p"
);
}
auto
user_weights_md
=
memory
::
desc
(
framework
::
vectorize
(
input
->
dims
()),
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
return
this
->
AcquireMemoryWithReorder
(
user_weights_md
,
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
input_data
),
"@alpha_mem_p"
,
is_test
);
}
std
::
shared_ptr
<
memory
>
AcquireDiffWeightsMemory
(
Tensor
*
output
)
{
T
*
output_data
=
output
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
bwd_pd_
->
diff_weights_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
bwd_pd_
->
diff_weights_desc
(),
output_data
,
"@diff_weights_mem_p"
);
}
};
}
// anonymous namespace
template
<
typename
T
>
class
PReluMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
this
->
RunKernel
(
ctx
);
}
void
RunKernel
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
onednn_engine
=
dev_ctx
.
GetEngine
();
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
alpha
=
ctx
.
Input
<
Tensor
>
(
"Alpha"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
PReluMKLDNNHandler
<
T
>
handler
(
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
alpha
,
ctx
.
InputName
(
"X"
),
mode
,
is_test
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryPossiblyWithReorder
(
alpha
,
is_test
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
out
);
auto
prelu_p
=
handler
.
AcquireForwardPrimitive
();
auto
&
astream
=
MKLDNNDeviceContext
::
tls
().
get_stream
();
prelu_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
};
template
<
typename
T
>
class
PReluGradMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
this
->
RunKernel
(
ctx
);
}
void
RunKernel
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
onednn_engine
=
dev_ctx
.
GetEngine
();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dalpha
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Alpha"
));
auto
*
alpha
=
ctx
.
Input
<
Tensor
>
(
"Alpha"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
PReluMKLDNNHandler
<
T
>
handler
(
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
alpha
,
framework
::
GradVarName
(
"X"
),
mode
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryPossiblyWithReorder
(
alpha
,
is_test
);
auto
diff_src_memory_p
=
handler
.
AcquireDiffSrcMemory
(
dx
);
auto
diff_weights_memory_p
=
handler
.
AcquireDiffWeightsMemory
(
dalpha
);
auto
diff_dst_memory_p
=
handler
.
AcquireDiffDstMemory
(
dout
);
auto
prelu_p
=
handler
.
AcquireBackwardPrimitive
();
auto
&
astream
=
MKLDNNDeviceContext
::
tls
().
get_stream
();
prelu_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DIFF_DST
,
*
diff_dst_memory_p
},
{
DNNL_ARG_DIFF_SRC
,
*
diff_src_memory_p
},
{
DNNL_ARG_DIFF_WEIGHTS
,
*
diff_weights_memory_p
}});
astream
.
wait
();
dx
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
dx
->
set_format
(
GetMKLDNNFormat
(
*
diff_src_memory_p
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
prelu
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
PReluMKLDNNKernel
<
float
>
,
ops
::
PReluMKLDNNKernel
<
paddle
::
platform
::
bfloat16
>
);
REGISTER_OP_KERNEL
(
prelu_grad
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
PReluGradMKLDNNKernel
<
float
>
,
ops
::
PReluGradMKLDNNKernel
<
paddle
::
platform
::
bfloat16
>
);
paddle/fluid/operators/prelu_op.cc
浏览文件 @
375e5618
...
...
@@ -95,9 +95,17 @@ class PReluOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
device_context
());
auto
input_data_type
=
framework
::
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
#ifdef PADDLE_WITH_MKLDNN
if
(
this
->
CanMKLDNNBeUsed
(
ctx
,
input_data_type
))
{
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kMKLDNN
,
framework
::
LibraryType
::
kMKLDNN
);
}
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
...
...
@@ -126,6 +134,18 @@ There are modes:
)DOC"
);
AddAttr
<
std
::
string
>
(
"mode"
,
"The mode for inputs to share weights."
)
.
SetDefault
(
"all"
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"mkldnn_data_type"
,
"(string, default
\"
float32
\"
). Data type of mkldnn kernel"
)
.
SetDefault
(
"float32"
)
.
InEnum
({
"float32"
,
"bfloat16"
});
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
}
};
...
...
@@ -153,9 +173,17 @@ class PReluGradOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
device_context
());
auto
input_data_type
=
framework
::
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
#ifdef PADDLE_WITH_MKLDNN
if
(
this
->
CanMKLDNNBeUsed
(
ctx
,
input_data_type
))
{
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kMKLDNN
,
framework
::
LibraryType
::
kMKLDNN
);
}
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_prelu_mkldnn_op.py
0 → 100644
浏览文件 @
375e5618
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
convert_float_to_uint16
def
ref_prelu
(
x
,
weight
,
mode
):
result
=
x
.
copy
()
if
mode
==
"all"
:
result
=
np
.
where
(
x
>
0
,
x
,
x
*
weight
[
0
])
elif
mode
==
"channel"
:
if
len
(
weight
.
shape
)
>
1
:
for
i
in
range
(
x
.
shape
[
1
]):
result
[:,
i
]
=
np
.
where
(
x
[:,
i
]
>
0
,
x
[:,
i
],
x
[:,
i
]
*
weight
[
0
,
i
])
else
:
for
i
in
range
(
x
.
shape
[
1
]):
result
[:,
i
]
=
np
.
where
(
x
[:,
i
]
>
0
,
x
[:,
i
],
x
[:,
i
]
*
weight
[
i
])
elif
mode
==
"element"
:
result
=
np
.
where
(
x
[:]
>
0
,
x
[:],
x
[:]
*
weight
)
return
result
class
TestPReluModeChannelOneDNNOp
(
OpTest
):
def
init_attrs
(
self
):
self
.
mode
=
"element"
self
.
alpha
=
np
.
random
.
random
((
1
,
4
,
5
,
5
)).
astype
(
"float32"
)
def
set_dtype_attr
(
self
):
pass
def
set_inputs
(
self
):
self
.
inputs
=
{
'X'
:
self
.
x
,
'Alpha'
:
self
.
alpha
}
def
setUp
(
self
):
self
.
op_type
=
"prelu"
self
.
x
=
np
.
random
.
random
((
2
,
4
,
5
,
5
)).
astype
(
"float32"
)
+
1
self
.
init_attrs
()
self
.
set_inputs
()
self
.
attrs
=
{
'mode'
:
self
.
mode
,
'use_mkldnn'
:
True
}
self
.
set_dtype_attr
()
self
.
outputs
=
{
'Out'
:
ref_prelu
(
self
.
x
,
self
.
alpha
,
self
.
mode
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'Alpha'
],
'Out'
)
class
TestPReluModeAllOneDNNOp
(
TestPReluModeChannelOneDNNOp
):
def
init_attrs
(
self
):
self
.
mode
=
"all"
self
.
alpha
=
np
.
random
.
random
((
1
,
1
,
1
,
1
)).
astype
(
"float32"
)
# Skip 'Alpha' input check because in mode = 'all' it has to be a single
# 1D value so checking if it has at least 100 values will cause an error
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestPReluModeElementOneDNNOp
(
TestPReluModeChannelOneDNNOp
):
def
init_attrs
(
self
):
self
.
mode
=
"element"
self
.
alpha
=
np
.
random
.
random
((
1
,
4
,
5
,
5
)).
astype
(
"float32"
)
class
TestPReluModeChannel3DOneDNNOp
(
TestPReluModeChannelOneDNNOp
):
def
init_attrs
(
self
):
self
.
mode
=
"channel"
self
.
x
=
np
.
random
.
random
((
1
,
100
,
1
)).
astype
(
"float32"
)
self
.
alpha
=
np
.
random
.
random
((
1
,
100
,
1
)).
astype
(
"float32"
)
class
TestPReluModeChannelAlpha1DOneDNNOp
(
TestPReluModeChannelOneDNNOp
):
def
init_attrs
(
self
):
self
.
mode
=
"channel"
self
.
x
=
np
.
random
.
random
((
1
,
100
,
1
)).
astype
(
"float32"
)
self
.
alpha
=
np
.
random
.
random
((
100
)).
astype
(
"float32"
)
class
TestPReluModeAllAlpha1DOneDNNOp
(
TestPReluModeAllOneDNNOp
):
def
init_attrs
(
self
):
self
.
mode
=
"channel"
self
.
x
=
np
.
random
.
random
((
1
,
1
,
100
)).
astype
(
"float32"
)
self
.
alpha
=
np
.
random
.
random
((
1
)).
astype
(
"float32"
)
# BF16 TESTS
def
create_bf16_test_class
(
parent
):
class
TestPReluBF16OneDNNOp
(
parent
):
def
set_inputs
(
self
,
):
self
.
inputs
=
{
'X'
:
convert_float_to_uint16
(
self
.
x
),
'Alpha'
:
convert_float_to_uint16
(
self
.
alpha
)
}
def
set_dtype_attr
(
self
):
self
.
attrs
[
'mkldnn_data_type'
]
=
"bfloat16"
def
calculate_grads
(
self
):
dout
=
self
.
outputs
[
'Out'
]
self
.
dx
=
self
.
x
.
copy
()
self
.
dalpha
=
self
.
alpha
.
copy
()
if
self
.
mode
==
"all"
:
self
.
dx
=
np
.
where
(
self
.
x
>
0
,
dout
,
dout
*
self
.
alpha
[
0
])
elif
self
.
mode
==
"channel"
:
if
len
(
self
.
alpha
.
shape
)
>
1
:
for
i
in
range
(
self
.
x
.
shape
[
1
]):
self
.
dx
[:,
i
]
=
np
.
where
(
self
.
x
[:,
i
]
>
0
,
dout
[:,
i
],
dout
[:,
i
]
*
self
.
alpha
[
0
,
i
])
else
:
for
i
in
range
(
self
.
x
.
shape
[
1
]):
self
.
dx
[:,
i
]
=
np
.
where
(
self
.
x
[:,
i
]
>
0
,
dout
[:,
i
],
dout
[:,
i
]
*
self
.
alpha
[
i
])
self
.
dx
elif
self
.
mode
==
"element"
:
self
.
dx
=
np
.
where
(
self
.
x
[:]
>
0
,
dout
[:],
dout
[:]
*
self
.
alpha
)
self
.
dalpha
=
np
.
where
(
self
.
x
<
0
,
dout
*
self
.
x
,
0
)
self
.
dout
=
dout
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
skipTest
(
"OneDNN doesn't support bf16 with CUDA, skipping UT"
+
self
.
__class__
.
__name__
)
elif
not
core
.
supports_bfloat16
():
self
.
skipTest
(
"Core doesn't support bf16, skipping UT"
+
self
.
__class__
.
__name__
)
else
:
self
.
check_output_with_place
(
core
.
CPUPlace
())
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
()
or
not
core
.
supports_bfloat16
():
self
.
skipTest
(
"Core is compiled with cuda or doesn't support bf16, kipping UT"
+
self
.
__class__
.
__name__
)
else
:
self
.
calculate_grads
()
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
,
"Alpha"
],
"Out"
,
user_defined_grads
=
[
self
.
dx
,
self
.
dalpha
],
user_defined_grad_outputs
=
[
convert_float_to_uint16
(
self
.
dout
)
])
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"BF16"
)
TestPReluBF16OneDNNOp
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPReluBF16OneDNNOp
#TODO jakpiase
#enable bf16 tests back when oneDNN bf16 class will be ready
#create_bf16_test_class(TestPReluModeChannelOneDNNOp)
#create_bf16_test_class(TestPReluModeElementOneDNNOp)
#create_bf16_test_class(TestPReluModeChannel3DOneDNNOp)
#create_bf16_test_class(TestPReluModeChannelAlpha1DOneDNNOp)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
375e5618
...
...
@@ -360,7 +360,9 @@ class OpTest(unittest.TestCase):
def
is_bfloat16_op
(
self
):
return
self
.
dtype
==
np
.
uint16
or
(
hasattr
(
self
,
'mkldnn_data_type'
)
and
getattr
(
self
,
'mkldnn_data_type'
)
is
"bfloat16"
)
getattr
(
self
,
'mkldnn_data_type'
)
is
"bfloat16"
)
or
(
hasattr
(
self
,
'attrs'
)
and
'mkldnn_data_type'
in
self
.
attrs
and
self
.
attrs
[
'mkldnn_data_type'
]
==
'bfloat16'
)
def
infer_dtype_from_inputs_outputs
(
self
,
inputs
,
outputs
):
def
is_np_data
(
input
):
...
...
@@ -1436,6 +1438,9 @@ class OpTest(unittest.TestCase):
op_outputs
=
self
.
outputs
if
hasattr
(
self
,
"outputs"
)
else
dict
()
op_attrs
=
self
.
attrs
if
hasattr
(
self
,
"attrs"
)
else
dict
()
if
self
.
is_bfloat16_op
():
check_dygraph
=
False
self
.
_check_grad_helper
()
if
self
.
dtype
==
np
.
float64
and
\
self
.
op_type
not
in
op_threshold_white_list
.
NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
:
...
...
tools/static_mode_white_list.py
浏览文件 @
375e5618
...
...
@@ -390,6 +390,7 @@ STATIC_MODE_TESTING_LIST = [
'test_positive_negative_pair_op'
,
'test_precision_recall_op'
,
'test_prelu_op'
,
'test_prelu_mkldnn_op'
,
'test_print_op'
,
'test_prior_box_op'
,
'test_profiler'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录