op_test.py 26.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18 19
import unittest
import numpy as np
20
import random
M
minqiyang 已提交
21
import six
22
import time
23
import itertools
Y
Yu Yang 已提交
24
import collections
M
minqiyang 已提交
25
from collections import defaultdict
26 27 28

import paddle.fluid as fluid
import paddle.fluid.core as core
29 30 31
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
32
from paddle.fluid.framework import Program, OpProtoHolder, Variable
33
from testsuite import create_op, set_input, append_input_output, append_loss_ops
34 35


36 37 38 39
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
40
    for i in six.moves.xrange(len(prob)):
41 42 43 44
        prob[i] /= prob_sum[i]
    return prob


45 46
def get_numeric_gradient(place,
                         scope,
47 48 49
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
50
                         output_names,
51
                         delta=0.005,
C
chengduo 已提交
52
                         in_place=False):
Y
Yu Yang 已提交
53
    # FIXME: change this method by compile time concepts
54
    set_input(scope, op, inputs, place)
55 56

    def product(dim):
M
minqiyang 已提交
57
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
58 59

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
60 61
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
62
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
63
        tensor_to_check_dtype = np.float32
64
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
65
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
66 67 68 69
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
70 71 72 73
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
74 75 76 77 78 79 80 81 82
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

83 84 85
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
86 87 88 89 90
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
91
            return tensor._get_float_element(i)
92
        else:
Y
yuyang18 已提交
93
            return tensor._get_double_element(i)
94 95

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
96 97 98 99 100 101 102 103
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
            numpy_tensor = numpy_tensor.reshape(shape).view(np.uint16)
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
104
            tensor._set_float_element(i, e)
105
        else:
Y
yuyang18 已提交
106
            tensor._set_double_element(i, e)
107

108 109
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
110
    for i in six.moves.xrange(tensor_size):
111
        if in_place:
112
            set_input(scope, op, inputs, place)
113 114

        # get one input element throw it's index i.
115
        origin = __get_elem__(tensor_to_check, i)
116 117
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
118
        __set_elem__(tensor_to_check, i, x_pos)
119 120 121
        y_pos = get_output()

        if in_place:
122
            set_input(scope, op, inputs, place)
123 124

        x_neg = origin - delta
125
        __set_elem__(tensor_to_check, i, x_neg)
126 127
        y_neg = get_output()

128
        __set_elem__(tensor_to_check, i, origin)
129 130
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
131
    return gradient_flat.reshape(tensor_to_check.shape())
132 133 134


class OpTest(unittest.TestCase):
135 136 137 138 139
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
140 141 142
        cls.call_once = False
        cls.dtype = "float32"
        cls.outputs = {}
143 144 145 146 147 148

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
149
        """Restore random seeds"""
150 151 152
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

153 154 155 156
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type
D
dzhwinter 已提交
157 158 159 160 161
            # See the comment of np_dtype_to_fluid_dtype
            # If the input type is uint16, we assume use float16
            # for lodtensor dtype.
            if self.dtype == np.uint16:
                self.dtype == np.float16
162 163 164 165 166 167

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def infer_dtype(numpy_dict):
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
M
minqiyang 已提交
168
            for var_name, var_value in six.iteritems(numpy_dict):
169 170 171 172 173 174 175 176 177 178 179 180 181 182
                if isinstance(var_value, (np.ndarray, np.generic)):
                    self.try_call_once(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):
                    # the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
                    if len(var_value) > 1 and isinstance(var_value[1], (
                            np.ndarray, np.generic)):
                        instance = var_value[1]
                        self.try_call_once(instance[1].dtype)
                else:
                    self.try_call_once("float32")

        infer_dtype(inputs)
        infer_dtype(outputs)

Y
Yang Yang(Tony) 已提交
183 184 185 186 187 188
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
189
                    if isinstance(np_value, tuple):
D
dzhwinter 已提交
190 191
                        tensor.set(
                            OpTest.np_value_to_fluid_value(np_value[0]), place)
192
                        tensor.set_recursive_sequence_lengths(np_value[1])
193
                    else:
D
dzhwinter 已提交
194 195
                        tensor.set(
                            OpTest.np_value_to_fluid_value(np_value), place)
Y
Yang Yang(Tony) 已提交
196 197 198 199
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
D
dzhwinter 已提交
200 201 202
                    tensor.set(
                        OpTest.np_value_to_fluid_value(self.inputs[var_name][
                            0]), place)
203 204
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
205
                else:
D
dzhwinter 已提交
206 207 208
                    tensor.set(
                        OpTest.np_value_to_fluid_value(self.inputs[var_name]),
                        place)
Y
Yang Yang(Tony) 已提交
209 210 211 212
                feed_map[var_name] = tensor

        return feed_map

213
    def _append_ops(self, block):
Y
Yang Yang(Tony) 已提交
214
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
215 216 217 218 219 220
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
221 222 223 224 225 226 227 228 229

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
230 231 232 233 234
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
235 236 237
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
238

239 240
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
241
        for name, value in six.iteritems(numpy_inputs):
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
261 262 263 264
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
265
            v = fluid.dygraph.base.to_variable(value=data)
M
minqiyang 已提交
266 267 268
            v._ivar.value().get_tensor().set_recursive_sequence_lengths(lod)
            return v
        else:
L
lujun 已提交
269
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
270

L
lujun 已提交
271 272
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            block = fluid.default_main_program().global_block()

            # prepare input variable
            inputs = defaultdict(list)
            for name, np_value in six.iteritems(self.inputs):
                if not isinstance(np_value, list):
                    np_value = [np_value]

                for i in range(len(np_value)):
                    inputs[name].append(
                        self._create_var_from_numpy(np_value[i]))

            # prepare output variable
            outputs = defaultdict(list)
            for name, np_value in six.iteritems(self.outputs):
                if not isinstance(np_value, list):
                    np_value = [np_value]

                for i in range(len(np_value)):
                    value = np_value[i]
                    if isinstance(value, tuple):
                        v = block.create_var(
                            name="%s_out%d" % (name, i),
                            dtype=value[0].dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        v._ivar.value().get_tensor(
                        ).set_recursive_sequence_lengths(value[1])
                    else:
                        v = block.create_var(
                            name="%s_out%d" % (name, i),
                            dtype=value.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                    outputs[name].append(v)

            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=self.attrs)

            return outputs
318

L
lujun 已提交
319
    def _calc_output(self, place, parallel=False, no_check_set=None, loss=None):
320 321 322 323 324 325 326 327 328 329 330 331
        program = Program()
        block = program.global_block()
        self._append_ops(block)

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

        if parallel:
            use_cuda = False
            if isinstance(place, fluid.CUDAPlace(0)):
                use_cuda = True
L
lujun 已提交
332 333 334 335 336 337 338 339
            if loss:
                executor = fluid.ParallelExecutor(
                    use_cuda=use_cuda,
                    loss_name=loss.name,
                    main_program=program)
            else:
                executor = fluid.ParallelExecutor(
                    use_cuda=use_cuda, main_program=program)
340 341 342 343 344 345 346
        else:
            executor = Executor(place)

        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
347
            for var_name, var in six.iteritems(outputs):
348 349
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
350 351 352 353 354
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)
355 356 357 358 359
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
        # fetch_list = map(block.var, fetch_list)
W
Wu Yi 已提交
360
        if not isinstance(fetch_list[0], fluid.framework.Variable):
361
            fetch_list = list(map(block.var, fetch_list))
362 363 364 365
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
366
        return outs, fetch_list
Y
Yang Yang(Tony) 已提交
367

368 369 370 371
    def check_output_with_place(self,
                                place,
                                atol,
                                no_check_set=None,
M
minqiyang 已提交
372
                                equal_nan=False,
L
lujun 已提交
373 374 375
                                check_dygraph=False):
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
376
                place, no_check_set=no_check_set)
377
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
M
minqiyang 已提交
378

Y
Yang Yang(Tony) 已提交
379
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
380 381
            if out_name not in self.outputs:
                continue
382 383
            if no_check_set is not None and out_name in no_check_set:
                continue
384

Y
Yang Yang(Tony) 已提交
385 386 387 388 389 390 391 392 393 394
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

395 396
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
397 398 399
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
400 401
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
402 403
                    if check_dygraph:
                        imperative_actual = dygraph_outs[sub_out_name][0]
M
minqiyang 已提交
404 405
                        imperative_actual_t = np.array(
                            imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
406
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
407 408
                    actual = outs[idx]
                    actual_t = np.array(actual)
409 410
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
411 412
                    self.assertTrue(
                        np.allclose(
413
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
414 415
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
416
                    if check_dygraph:
M
minqiyang 已提交
417 418 419 420 421 422 423
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
424
                            str(place) + " in dygraph mode")
425 426
                    if isinstance(expect, tuple):
                        self.assertListEqual(
427 428
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
429
                            ") has different lod at " + str(place))
L
lujun 已提交
430
                    if check_dygraph:
M
minqiyang 已提交
431 432 433 434
                        self.assertListEqual(
                            imperative_actual._ivar.value().get_tensor()
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
435
                            str(place) + " in dygraph mode")
436
            else:
L
lujun 已提交
437 438
                if check_dygraph:
                    imperative_actual = dygraph_outs[out_name][0]
M
minqiyang 已提交
439 440
                    imperative_actual_t = np.array(
                        imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
441
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
442 443
                actual = outs[idx]
                actual_t = np.array(actual)
444
                expect = self.outputs[out_name]
445
                expect_t = expect[0] if isinstance(expect, tuple) else expect
446 447
                self.assertTrue(
                    np.allclose(
448
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
449
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
450
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
451
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
452
                if check_dygraph:
M
minqiyang 已提交
453 454 455 456 457 458 459 460 461 462
                    self.assertTrue(
                        np.allclose(
                            imperative_actual_t,
                            expect_t,
                            atol=atol,
                            equal_nan=equal_nan),
                        "Output (" + out_name + ") has diff at " + str(place) +
                        "\nExpect " + str(expect_t) + "\n" + "But Got" +
                        str(imperative_actual_t) + " in class " +
                        self.__class__.__name__)
463
                if isinstance(expect, tuple):
464 465
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
466
                                         ") has different lod at " + str(place))
L
lujun 已提交
467
                    if check_dygraph:
M
minqiyang 已提交
468 469
                        self.assertListEqual(
                            imperative_actual._ivar.value().get_tensor()
M
minqiyang 已提交
470 471
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
472
                            str(place) + " in dygraph mode")
473

474
    def _get_places(self):
D
dzhwinter 已提交
475 476 477 478 479 480
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
481 482
                else:
                    return []
D
dzhwinter 已提交
483 484
            else:
                return []
485
        places = [fluid.CPUPlace()]
486
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
B
baojun 已提交
487 488 489
        use_ngraph = bool(os.getenv("FLAGS_use_ngraph", False))
        if use_ngraph:
            cpu_only = True
490 491
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
492
            places.append(core.CUDAPlace(0))
493 494
        return places

M
minqiyang 已提交
495 496 497 498
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
L
lujun 已提交
499
                     check_dygraph=False):
500
        places = self._get_places()
Q
qijun 已提交
501
        for place in places:
M
minqiyang 已提交
502
            self.check_output_with_place(place, atol, no_check_set, equal_nan,
L
lujun 已提交
503
                                         check_dygraph)
Q
qijun 已提交
504

505
    def check_output_customized(self, checker):
506
        places = self._get_places()
507 508 509
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
510
            outs.sort(key=len)
511 512
            checker(outs)

D
Dun 已提交
513 514
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
515

M
minqiyang 已提交
516
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
517 518 519 520 521 522 523 524
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
525
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
526 527 528
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
529 530 531 532 533

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
534
                   output_names,
535
                   no_grad_set=None,
536
                   numeric_grad_delta=0.005,
537
                   in_place=False,
Q
Qiao Longfei 已提交
538
                   max_relative_error=0.005,
C
chengduo 已提交
539
                   user_defined_grads=None):
540
        places = self._get_places()
541 542 543 544
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
C
chengduo 已提交
545
                                       user_defined_grads)
546 547 548 549 550 551 552 553 554

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
C
chengduo 已提交
555
                              user_defined_grads=None):
556
        self.scope = core.Scope()
Q
qijun 已提交
557
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
558
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
559
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
560 561 562 563 564 565 566 567 568 569 570

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
571

572 573 574
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
575 576 577
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
578
        numeric_grads = user_defined_grads or [
579
            get_numeric_gradient(
580
                place,
581 582 583 584
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
585
                output_names,
586
                delta=numeric_grad_delta,
C
chengduo 已提交
587
                in_place=in_place) for input_to_check in inputs_to_check
588
        ]
589 590 591
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)

D
Dun 已提交
592 593 594
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
595

Y
Yu Yang 已提交
596 597 598 599 600
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
601
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
602 603
        return tensor

K
Kexin Zhao 已提交
604
    @staticmethod
K
Kexin Zhao 已提交
605 606
    def np_dtype_to_fluid_dtype(input):
        """Change the dtype of float16 numpy array
K
Kexin Zhao 已提交
607

608
        numpy float16 is binded to paddle::platform::float16
K
Kexin Zhao 已提交
609
        in tensor_py.h via the help of uint16 data type since
610
        the internal memory representation of float16 is
K
Kexin Zhao 已提交
611 612
        uint16_t in paddle and np.uint16 in numpy, which are
        themselves binded together by pybind.
K
Kexin Zhao 已提交
613 614 615 616 617

        Args:
            input: input numpy array

        Returns:
618
            input: The dtype of input will be changed to np.uint16 if
K
Kexin Zhao 已提交
619
                it is originally np.float16, such that the internal memory
620
                of input will be reinterpreted as of dtype np.uint16.
K
Kexin Zhao 已提交
621 622
        """
        if input.dtype == np.float16:
K
Kexin Zhao 已提交
623 624
            input.dtype = np.uint16
        return input
K
Kexin Zhao 已提交
625

D
dzhwinter 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        """
        See above, convert the dtype to normal type.
        """
        if dtype == np.uint16:
            dtype = np.float16
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        if input.dtype == np.float16:
            input = input.view(np.uint16)
        return input

641 642 643 644 645 646
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
647 648
        prog = Program()
        block = prog.global_block()
649 650
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
651
        param_grad_list = append_backward(
Y
Yu Yang 已提交
652 653
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

654 655
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
656 657

        fetch_list = [g for p, g in param_grad_list]
658 659 660 661 662
        if parallel:
            use_cuda = False
            if isinstance(place, fluid.CUDAPlace(0)):
                use_cuda = True
            executor = fluid.ParallelExecutor(
D
dzhwinter 已提交
663
                use_cuda=use_cuda, loss_name=loss.name, main_program=prog)
664 665
        else:
            executor = Executor(place)
666 667 668
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))