pooling.py 85.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
from paddle.fluid.framework import (
    Variable,
    _in_legacy_dygraph,
    _non_static_mode,
    in_dygraph_mode,
)

23
from ...fluid.data_feeder import check_type, check_variable_and_dtype
24 25 26 27

# TODO: define pooling functions
from ...fluid.layers import LayerHelper, utils
from ...tensor.manipulation import squeeze, unsqueeze
28

29 30
__all__ = []

31

32 33 34 35 36
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
37
    if len(x.shape) != dimension:
38 39
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
40 41 42
                dimension, len(x.shape), type(x)
            )
        )
43 44


45
def _check_instance(x, x_name, types=(int, float)):
46 47

    if not isinstance(x, types):
48 49
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
50 51 52
                types, x_name, type(x)
            )
        )
53 54


D
Double_V 已提交
55 56 57 58
def _check_value_limitation(x, x_name, min_limit=1e-3):
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
59 60 61 62
                "Excepted the input {} to be greater than {} but received x: {}. ".format(
                    x_name, min_limit, x
                )
            )
D
Double_V 已提交
63 64 65 66 67

    for ele in x:
        _check_value(ele, x_name)


68 69 70
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
71
    else:
72
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
73 74


75 76 77 78
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
79 80


81 82 83 84 85
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
86 87
                "Attr(data_format): %s" % str(data_format)
            )
88 89 90 91 92 93
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
94 95
                "Attr(data_format): %s" % str(data_format)
            )
96 97 98 99 100 101
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
102 103
                "Attr(data_format): %s" % str(data_format)
            )
104 105
        else:
            return True if data_format == "NDHWC" else False
106 107


108 109 110 111 112
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
113 114 115 116
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
117
        if padding == "VALID":
118
            if ceil_mode is not False:
119
                raise ValueError(
120
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
121 122
                    "Received ceil_mode: True."
                )
123 124 125 126 127 128 129 130 131 132 133 134

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
135
                raise ValueError(
136
                    "Non-zero padding({}) in the batch or channel dimensions "
137 138
                    "is not supported.".format(padding)
                )
139
            padding_algorithm = "EXPLICIT"
140
            padding = _exclude_padding_in_batch_and_channel(
141 142
                padding, channel_last
            )
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
158
    else:
159 160 161 162
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

163

164
def _expand_low_nd_padding(padding):
165
    # 1d to 2d fake input
166 167 168 169 170 171
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
172 173 174 175
            "The size of padding's dimmention should be 1 or 2. But got padding={}".format(
                padding
            )
        )
176 177 178
    return padding


179 180 181 182 183 184 185 186 187
def avg_pool1d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    exclusive=True,
    ceil_mode=False,
    name=None,
):
D
Double_V 已提交
188
    """
189 190
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
191 192 193 194

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
195
                          `L` is the length of the feature. The data type is float32 or float64.
196
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
197
            it must contain an integer.
198
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
199 200 201 202 203 204 205 206
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
207
        exclusive (bool): Whether to exclude padding points in average pooling
208
                          mode, default is `True`.
209
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
210
            If it is set to False, the floor function will be used. The default value is False.
211 212 213 214 215 216 217 218
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
219

C
Chen Long 已提交
220
            import paddle
221
            import paddle.nn as nn
C
Chen Long 已提交
222

223 224 225 226
            data = paddle.uniform([1, 3, 32], paddle.float32)
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
227 228 229
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
230
    if not in_dynamic_mode():
231
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
232
    _check_input(x, 3)
233
    x = unsqueeze(x, [2])
234
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
235 236 237 238 239 240 241
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
242 243 244
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

245
    channel_last = _channel_last("NCL", 1)
246 247 248
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode
    )
249

250 251
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
252

253
    if in_dygraph_mode():
254 255 256 257 258 259 260 261 262 263 264 265 266
        output = _C_ops.pool2d(
            x,
            kernel_size,
            stride,
            padding,
            ceil_mode,
            exclusive,
            data_format,
            'avg',
            False,
            False,
            padding_algorithm,
        )
267 268 269
        return squeeze(output, [2])

    if _in_legacy_dygraph():
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        output = _legacy_C_ops.pool2d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            kernel_size,
            'global_pooling',
            False,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'use_cudnn',
            True,
            'ceil_mode',
            ceil_mode,
            'use_mkldnn',
            False,
            'exclusive',
            exclusive,
            'data_format',
            data_format,
        )
295 296 297 298
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
299
    dtype = helper.input_dtype(input_param_name='x')
300 301
    pool_out = helper.create_variable_for_type_inference(dtype)

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
320 321 322 323

    return squeeze(pool_out, [2])


324 325 326 327 328 329 330 331 332 333 334
def avg_pool2d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    ceil_mode=False,
    exclusive=True,
    divisor_override=None,
    data_format="NCHW",
    name=None,
):
335
    """
336 337
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
338

339
    Args:
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
360
        exclusive (bool): Whether to exclude padding points in average pooling
361 362 363 364 365
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
366 367 368
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
369

370 371
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
372

373 374
    Examples:
        .. code-block:: python
375

C
Chen Long 已提交
376 377
            import paddle
            import paddle.nn.functional as F
378

C
Chen Long 已提交
379
            # avg pool2d
380
            x = paddle.uniform([1, 3, 32, 32], paddle.float32)
C
Chen Long 已提交
381 382 383 384
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
385
    """
386
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
387 388 389
    if stride is None:
        stride = kernel_size
    else:
390
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
391

D
Double_V 已提交
392 393 394
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

395
    channel_last = _channel_last(data_format, 2)
396 397 398
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode
    )
399

400
    if _non_static_mode():
F
From00 已提交
401
        if in_dygraph_mode():
402 403 404 405 406 407 408 409 410 411 412 413 414
            output = _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                exclusive,
                data_format,
                'avg',
                False,
                False,
                padding_algorithm,
            )
F
From00 已提交
415
        else:
416
            output = _legacy_C_ops.pool2d(
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
                x,
                'pooling_type',
                'avg',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                exclusive,
                'data_format',
                data_format,
            )
441 442 443 444 445
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
446

447
    op_type = 'pool2d'
448
    helper = LayerHelper(op_type, **locals())
449
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
450
    dtype = helper.input_dtype(input_param_name='x')
451 452
    pool_out = helper.create_variable_for_type_inference(dtype)

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": "avg",
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
471

472 473 474 475 476
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
477 478


479 480 481 482 483 484 485 486 487 488 489
def avg_pool3d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    ceil_mode=False,
    exclusive=True,
    divisor_override=None,
    data_format="NCDHW",
    name=None,
):
490
    """
491 492
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
493 494

    Args:
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
513
        exclusive (bool): Whether to exclude padding points in average pooling
514 515 516 517 518
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
519
        name(str, optional): For detailed information, please refer
520 521
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
522

523
    Returns:
524
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
525

526 527
    Examples:
        .. code-block:: python
528

529
          import paddle
C
Chen Long 已提交
530

531
          x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
532 533 534 535 536 537 538
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
539
    """
540 541 542 543 544
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
545

546
    channel_last = _channel_last(data_format, 3)
547 548 549
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode
    )
550

D
Double_V 已提交
551 552 553
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

554
    if in_dygraph_mode():
555 556 557 558 559 560 561 562 563 564 565 566 567
        pool_out = _C_ops.pool3d(
            x,
            kernel_size,
            stride,
            padding,
            ceil_mode,
            exclusive,
            data_format,
            'avg',
            False,
            False,
            padding_algorithm,
        )
568 569
    elif _in_legacy_dygraph():
        pool_out = _legacy_C_ops.pool3d(
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
            x,
            'pooling_type',
            'avg',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            'global_pooling',
            False,
            'padding_algorithm',
            padding_algorithm,
            'use_cudnn',
            True,
            'ceil_mode',
            ceil_mode,
            'use_mkldnn',
            False,
            'exclusive',
            exclusive,
            'data_format',
            data_format,
        )
594 595 596 597 598 599 600 601
    else:
        op_type = "pool3d"
        helper = LayerHelper(op_type, **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
        dtype = helper.input_dtype(input_param_name='x')
        pool_out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": pool_out}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        helper.append_op(
            type=op_type,
            inputs={"X": x},
            outputs=outputs,
            attrs={
                "pooling_type": 'avg',
                "ksize": kernel_size,
                "global_pooling": False,
                "strides": stride,
                "paddings": padding,
                "padding_algorithm": padding_algorithm,
                "use_cudnn": True,
                "ceil_mode": ceil_mode,
                "use_mkldnn": False,
                "exclusive": exclusive,
                "data_format": data_format,
            },
        )
620

621 622 623 624
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
625 626 627 628 629
        return (
            pool_out
            * (kernel_size[0] * kernel_size[1] * kernel_size[2])
            / divisor_override
        )
630 631


632 633 634 635 636 637 638 639 640
def max_pool1d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    name=None,
):
641
    """
642 643
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
644 645

    Args:
646 647 648
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
649
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
650
            it must contain an integer.
651
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
652 653 654 655 656 657 658 659
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
660
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
661 662
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
663 664 665 666 667
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
668

669 670
    Examples:
        .. code-block:: python
671

672 673
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
674

675
          data = paddle.uniform([1, 3, 32], paddle.float32)
676 677
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
678
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
679
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
680
    """
681 682
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
683
    if not in_dynamic_mode():
684
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
685 686 687
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
688 689 690
    if stride is None:
        stride = kernel_size
    else:
691
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
692

693 694 695
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode
    )
696

697 698
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
699

F
From00 已提交
700 701
    if in_dygraph_mode():
        if return_mask:
702 703 704 705 706 707 708 709
            pool_out = _C_ops.max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False
            )
            return (
                (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
                if return_mask
                else squeeze(pool_out[0], [2])
            )
F
From00 已提交
710
        else:
711 712 713 714 715 716 717 718 719 720 721 722 723
            pool_out = _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
            )
F
From00 已提交
724 725 726
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
727
        if return_mask:
728
            pool_out = _legacy_C_ops.max_pool2d_with_index(
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                x,
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'strides',
                stride,
                'paddings',
                padding,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
            return (
                (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
                if return_mask
                else squeeze(pool_out[0], [2])
            )
D
Double_V 已提交
756
        else:
757
            pool_out = _legacy_C_ops.pool2d(
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
782 783
            return squeeze(pool_out, [2])

784
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
785
    helper = LayerHelper(op_type, **locals())
786
    dtype = helper.input_dtype(input_param_name='x')
787
    pool_out = helper.create_variable_for_type_inference(dtype)
788
    mask = helper.create_variable_for_type_inference('int32')
789 790
    outputs = {"Out": pool_out, "Mask": mask}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        },
    )

    return (
        (squeeze(pool_out, [2]), squeeze(mask, [2]))
        if return_mask
        else squeeze(pool_out, [2])
    )
815 816


817
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
818 819 820
    assert output_size is None or isinstance(output_size, (list, tuple)), (
        "Required output_size is None|list|tuple, but received %s" % output_size
    )
821 822 823
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
824 825 826 827 828
        default_size.append(
            (input_size[-len(kernel_size) + d] - 1) * stride[d]
            + kernel_size[d]
            - 2 * padding[d]
        )
829 830

    has_static_var = False
831
    if output_size is None:
832
        return default_size
833 834 835 836 837 838 839 840
    elif utils._contain_var(output_size):
        if not _non_static_mode():
            has_static_var = True
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            for i, var in enumerate(output_size):
                if isinstance(var, Variable):
                    output_size[i] = var.numpy()[0]
841 842 843 844 845 846 847

    if len(output_size) == len(kernel_size) + 2:
        output_size = output_size[2:]
    if len(output_size) != len(kernel_size):
        raise ValueError(
            "output_size should be a sequence containing "
            "{} or {} elements, but it has a length of '{}'".format(
848 849 850
                len(kernel_size), len(kernel_size) + 2, len(output_size)
            )
        )
851 852 853 854 855 856
    if not has_static_var:
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
857 858 859 860
                    'invalid output_size "{}" (dim {} must be between {} and {})'.format(
                        output_size, d, min_size, max_size
                    )
                )
861 862

    return output_size
863 864


865 866 867 868 869 870 871 872 873 874
def max_unpool1d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCL",
    output_size=None,
    name=None,
):
875
    r"""
876
    This API implements max unpooling 1d opereation.
877 878
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
879 880 881 882
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
883

884 885 886 887 888 889 890 891
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
892
                          shape [N, C, L]. The format of input tensor is `"NCL"`,
893 894 895
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
896
                          shape [N, C, L]. The format of input tensor is `"NCL"` ,
897 898 899 900 901 902 903
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
904
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
905 906 907 908 909 910 911 912 913 914
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
915
        Tensor: The output tensor of unpooling result.
916 917 918

    Examples:
        .. code-block:: python
919

920 921 922 923 924 925 926 927 928 929 930 931
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
932 933 934 935
        raise ValueError(
            "Attr(data_format) should be 'NCL'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
936 937 938 939 940 941 942 943 944 945 946 947
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

948 949 950
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
951

X
xiaoting 已提交
952
    if in_dygraph_mode():
953 954 955
        output = _C_ops.unpool(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
X
xiaoting 已提交
956 957
        return squeeze(output, [2])
    elif in_dynamic_mode():
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        output = _legacy_C_ops.unpool(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
974 975 976 977 978 979 980
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

981 982 983 984 985 986 987 988 989 990 991 992
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
993 994 995
    return squeeze(unpool_out, [2])


996 997 998 999 1000 1001 1002 1003 1004 1005
def max_unpool2d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCHW",
    output_size=None,
    name=None,
):
1006
    r"""
1007
    This API implements max unpooling 2d opereation.
1008
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
1009

1010 1011

    Args:
1012
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
1013
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`,
1014
                          where `N` is batch size, `C` is the number of channels,
1015 1016
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
1017
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
1018
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` ,
1019 1020 1021 1022 1023 1024 1025 1026
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
1027
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1028 1029
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
1030 1031 1032
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
1047
            Tensor: The output tensor of unpooling result.
1048 1049 1050 1051

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
1052

1053 1054 1055

        Examples:
            .. code-block:: python
1056

C
Chen Long 已提交
1057 1058
            import paddle
            import paddle.nn.functional as F
1059

1060
            data = paddle.rand(shape=[1,1,6,6])
1061 1062 1063 1064 1065
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

1066
            # specify a different output size than input size
1067
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
1068
            # unpool_out shape: [1, 1, 7, 7]
1069

1070 1071
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1072 1073 1074 1075 1076 1077 1078
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
1079 1080 1081 1082
        raise ValueError(
            "Attr(data_format) should be 'NCHW'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
1083

1084 1085 1086
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
1087

X
xiaoting 已提交
1088
    if in_dygraph_mode():
1089 1090 1091
        output = _C_ops.unpool(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
1092
        return output
X
xiaoting 已提交
1093
    elif in_dynamic_mode():
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        output = _legacy_C_ops.unpool(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
1110 1111 1112 1113 1114 1115 1116
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
1129 1130 1131
    return unpool_out


1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
def max_unpool3d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCDHW",
    output_size=None,
    name=None,
):
1142
    r"""
1143
    This API implements max unpooling 3d opereation.
1144 1145
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1146 1147 1148 1149
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
1165
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`,
1166
                          where `N` is batch size, `C` is the number of channels, `D` is
1167
                          the depth of the feature, `H` is the height of the feature,
1168 1169
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
1170
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` ,
1171
                          where `N` is batch size, `C` is the number of channels, `D` is
1172
                          the depth of the feature, `H` is the height of the feature,
1173 1174 1175 1176 1177 1178
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
1179
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
1190
        Tensor: The output tensor of unpooling result.
1191 1192 1193

    Examples:
        .. code-block:: python
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
1213 1214 1215 1216
        raise ValueError(
            "Attr(data_format) should be 'NCDHW'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
1217

1218 1219 1220
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
1221

X
xiaoting 已提交
1222
    if in_dygraph_mode():
1223 1224 1225
        output = _C_ops.unpool3d(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
1226
        return output
X
xiaoting 已提交
1227
    elif in_dynamic_mode():
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        output = _legacy_C_ops.unpool3d(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
1244 1245 1246 1247 1248 1249 1250
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
1263 1264 1265
    return unpool_out


1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
def max_pool2d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    data_format="NCHW",
    name=None,
):
W
Wei Shengyu 已提交
1276 1277 1278
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
W
Wei Shengyu 已提交
1279

W
Wei Shengyu 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
W
Wei Shengyu 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

          import paddle
          import paddle.nn.functional as F

          # max pool2d
          x = paddle.uniform([1, 3, 32, 32], paddle.float32)
          out = F.max_pool2d(x, kernel_size=2, stride=2, padding=0)
          # output.shape [1, 3, 16, 16]
          # for return_mask=True
          out, max_indices = F.max_pool2d(x, kernel_size=2, stride=2, padding=0, return_mask=True)
          # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
W
Wei Shengyu 已提交
1323
    """
W
Wei Shengyu 已提交
1324

1325
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1326 1327 1328 1329 1330 1331 1332 1333
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1334 1335
            "Attr(data_format): %s." % str(data_format)
        )
1336 1337 1338

    channel_last = True if data_format == "NHWC" else False

1339 1340 1341
    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode
    )
1342

1343
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1344
        raise ValueError(
1345
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1346 1347
        )

F
From00 已提交
1348 1349
    if in_dygraph_mode():
        if return_mask:
1350 1351 1352
            output = _C_ops.max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False
            )
F
From00 已提交
1353 1354
            return output if return_mask else output[0]
        else:
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            return _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
            )
F
From00 已提交
1368 1369

    if _in_legacy_dygraph():
1370
        if return_mask:
1371
            output = _legacy_C_ops.max_pool2d_with_index(
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                x,
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'strides',
                stride,
                'paddings',
                padding,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
1394
            return output if return_mask else output[0]
D
Double_V 已提交
1395
        else:
1396
            output = _legacy_C_ops.pool2d(
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
1421
            return output
1422

1423
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1424
    helper = LayerHelper(op_type, **locals())
1425 1426 1427
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'max_pool2d'
    )
1428
    dtype = helper.input_dtype(input_param_name='x')
1429
    pool_out = helper.create_variable_for_type_inference(dtype)
1430
    mask = helper.create_variable_for_type_inference("int32")
1431
    outputs = {"Out": pool_out, "Mask": mask}
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        },
    )
1451

1452
    return (pool_out, mask) if return_mask else pool_out
1453 1454


1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
def max_pool3d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    data_format="NCDHW",
    name=None,
):
1465
    """
1466 1467
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
W
Wei Shengyu 已提交
1468

1469 1470
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1471
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1472
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1473
            is a tuple or list, it must contain three integers,
1474
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1475
            Otherwise, the pool kernel size will be the cube of an int.
1476 1477
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1478
            Otherwise, the pool stride size will be a cube of an int.
1479 1480 1481 1482 1483 1484 1485
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1486
        ceil_mode (bool): ${ceil_mode_comment}
1487
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1488 1489 1490 1491 1492 1493
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1494

1495 1496
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
W
Wei Shengyu 已提交
1497

1498 1499
    Examples:
        .. code-block:: python
1500

W
Wei Shengyu 已提交
1501 1502
          import paddle
          import paddle.nn.functional as F
1503

W
Wei Shengyu 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
          # max pool3d
          x = paddle.uniform([1, 3, 32, 32, 32])
          output = F.max_pool3d(x,
                                kernel_size=2,
                                stride=2, padding=0)
          # output.shape [1, 3, 16, 16, 16]
          # for return_mask=True
          x = paddle.uniform([1, 3, 32, 32, 32])
          output, max_indices = paddle.nn.functional.max_pool3d(x,
                                                                kernel_size=2,
                                                                stride=2,
                                                                padding=0,
                                                                return_mask=True)

          # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1519
    """
W
Wei Shengyu 已提交
1520

1521 1522 1523 1524 1525 1526
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1527
    channel_last = _channel_last(data_format, 3)
1528

1529 1530 1531
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode
    )
1532

1533
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1534
        raise ValueError(
1535
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1536 1537
        )

F
From00 已提交
1538 1539
    if in_dygraph_mode():
        if return_mask:
1540 1541 1542
            output = _C_ops.max_pool3d_with_index(
                x, kernel_size, stride, padding, False, False
            )
F
From00 已提交
1543 1544
            return output if return_mask else output[0]
        else:
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            return _C_ops.pool3d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
            )
F
From00 已提交
1558 1559

    if _in_legacy_dygraph():
1560
        if return_mask:
1561
            output = _legacy_C_ops.max_pool3d_with_index(
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'strides',
                stride,
                'paddings',
                padding,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
1586
            return output if return_mask else output[0]
D
Double_V 已提交
1587
        else:
1588
            output = _legacy_C_ops.pool3d(
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
1613
            return output
1614

1615
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1616
    helper = LayerHelper(op_type, **locals())
1617
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1618
    dtype = helper.input_dtype(input_param_name='x')
1619
    pool_out = helper.create_variable_for_type_inference(dtype)
1620
    mask = helper.create_variable_for_type_inference('int32')
1621 1622
    outputs = {"Out": pool_out, "Mask": mask}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        },
    )
1641

1642
    return (pool_out, mask) if return_mask else pool_out
1643 1644


1645
def adaptive_avg_pool1d(x, output_size, name=None):
1646
    """
1647 1648
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`.

1649 1650
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1651

1652
    Args:
1653 1654 1655
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1656

1657
    Returns:
1658
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1659

1660 1661
    Examples:
        .. code-block:: python
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1681 1682
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1683
    if not in_dynamic_mode():
1684 1685 1686
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'adaptive_pool2d'
        )
1687
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1688 1689
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1690

1691
    x = unsqueeze(x, [2])
1692
    if in_dygraph_mode():
1693
        x = x._use_cudnn(False)
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        pool_out = _C_ops.pool2d(
            x,
            pool_size,
            [1, 1],
            [0, 0],
            False,
            True,
            "NCHW",
            pool_type,
            False,
            True,
            "EXPLICIT",
        )
1707 1708
        return squeeze(pool_out, [2])
    if _in_legacy_dygraph():
1709 1710 1711
        pool_out = _legacy_C_ops.pool2d(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True
        )
1712
        return squeeze(pool_out, [2])
1713

1714 1715
    l_type = "pool2d"

1716
    helper = LayerHelper(l_type, **locals())
1717
    dtype = helper.input_dtype(input_param_name='x')
1718 1719
    pool_out = helper.create_variable_for_type_inference(dtype)

1720
    outputs = {"Out": pool_out}
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        },
    )
1731

1732
    return squeeze(pool_out, [2])
1733 1734


1735
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
1736
    r"""
1737

1738 1739
    Applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1740

1741
    For avg adaptive pool2d:
1742

1743
    ..  math::
1744 1745 1746 1747
        hstart &= floor(i * H_{in} / H_{out}) \\
        hend &= ceil((i + 1) * H_{in} / H_{out}) \\
        wstart &= floor(j * W_{in} / W_{out}) \\
        wend &= ceil((j + 1) * W_{in} / W_{out}) \\
1748
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
1749 1750 1751

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1752
                          The data type can be float32 or float64.
1753 1754 1755
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
1756
        data_format (str, optional): The data format of the input and output data. An optional string
1757 1758 1759 1760 1761
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1762

1763
    Returns:
1764
        Tensor, The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1765

1766 1767
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
1785

1786
            x = paddle.rand([2, 3, 32, 32])
1787
            # x.shape is [2, 3, 32, 32]
1788
            out = paddle.nn.functional.adaptive_avg_pool2d(
1789 1790
                            x = x,
                            output_size=[3, 3])
1791
            # out.shape is [2, 3, 3, 3]
1792

1793
    """
Z
zhiboniu 已提交
1794
    if not in_dynamic_mode():
1795 1796 1797
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'adaptive_avg_pool2d'
        )
1798
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1799 1800 1801 1802

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1803 1804
            "Attr(data_format): %s." % str(data_format)
        )
1805 1806 1807 1808 1809 1810 1811 1812 1813

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1814
        output_size = list(output_size)
1815
        if output_size[0] is None:
1816
            output_size[0] = in_h
1817
        if output_size[1] is None:
1818 1819
            output_size[1] = in_w

1820 1821 1822 1823 1824 1825 1826 1827 1828
    if _non_static_mode():
        output_size = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in output_size
        ]
    # output_size support Variable in static mode
    elif utils._contain_var(output_size):
        output_size = utils._convert_to_tensor_list(output_size)

F
From00 已提交
1829
    if in_dygraph_mode():
1830
        x = x._use_cudnn(False)
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
        return _C_ops.pool2d(
            x,
            output_size,
            [1, 1],
            [0, 0],
            False,
            True,
            data_format,
            'avg',
            False,
            True,
            "EXPLICIT",
        )
F
From00 已提交
1844 1845

    if _in_legacy_dygraph():
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        return _legacy_C_ops.pool2d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            output_size,
            'global_pooling',
            False,
            'adaptive',
            True,
            'data_format',
            data_format,
        )
1859 1860 1861 1862

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1863
    dtype = helper.input_dtype(input_param_name='x')
1864 1865 1866 1867
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        },
    )
1879 1880 1881 1882 1883

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
1884
    r"""
1885

1886 1887
    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1888

1889
    For avg adaptive pool3d:
1890

1891
    ..  math::
1892 1893 1894 1895 1896 1897
        dstart &= floor(i * D_{in} / D_{out}) \\
        dend &= ceil((i + 1) * D_{in} / D_{out}) \\
        hstart &= floor(j * H_{in} / H_{out}) \\
        hend &= ceil((j + 1) * H_{in} / H_{out}) \\
        wstart &= floor(k * W_{in} / W_{out}) \\
        wend &= ceil((k + 1) * W_{in} / W_{out}) \\
1898 1899
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
1900 1901 1902

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1903 1904 1905 1906 1907
            The data type can be float32, float64.
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or
            list, it must contain three elements, (D, H, W). D, H and W can be either a int,
            or None which means the size will be the same as that of the input.
        data_format (str, optional): The data format of the input and output data. An optional string
1908 1909
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1910 1911 1912
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.

1913
    Returns:
1914
        Tensor, The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
1915

1916 1917
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1938 1939

            input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1940
            out = paddle.nn.functional.adaptive_avg_pool3d(
1941
                            x = input_data,
1942
                            output_size=[3, 3, 3])
1943
            # out.shape is [2, 3, 3, 3, 3]
1944

1945
    """
Z
zhiboniu 已提交
1946
    if not in_dynamic_mode():
1947 1948 1949
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_avg_pool3d'
        )
1950
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1951 1952 1953 1954

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1955 1956
            "Attr(data_format): %s." % str(data_format)
        )
1957 1958 1959 1960 1961 1962 1963 1964 1965

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1966
        output_size = list(output_size)
1967
        if output_size[0] is None:
1968
            output_size[0] = in_l
1969
        if output_size[1] is None:
1970
            output_size[1] = in_h
1971
        if output_size[2] is None:
1972 1973
            output_size[2] = in_w

1974
    if in_dygraph_mode():
1975
        x = x._use_cudnn(False)
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        return _C_ops.pool3d(
            x,
            output_size,
            [1, 1, 1],
            [0, 0, 0],
            False,
            True,
            data_format,
            'avg',
            False,
            True,
            "EXPLICIT",
        )
1989
    elif _in_legacy_dygraph():
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
        return _legacy_C_ops.pool3d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            output_size,
            'global_pooling',
            False,
            'adaptive',
            True,
            'data_format',
            data_format,
        )
2003 2004 2005 2006

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
2007
    dtype = helper.input_dtype(input_param_name='x')
2008 2009 2010
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        },
    )
2022 2023

    return pool_out
2024 2025


2026
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
2027 2028 2029 2030 2031 2032 2033 2034 2035
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
2036
        output_size (int): The pool kernel size. The value should be an integer.
2037
        return_mask (bool): If true, the index of max pooling point will be returned along
2038 2039 2040 2041 2042 2043 2044
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
2045

2046 2047
    Examples:
        .. code-block:: python
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
2063

2064
              data = paddle.uniform([1, 3, 32], paddle.float32)
2065 2066
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
2067
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
2068 2069 2070
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
2071
    if not in_dynamic_mode():
2072 2073 2074
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool1d'
        )
2075 2076
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
2077 2078 2079 2080 2081
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
2082
    if in_dygraph_mode():
2083 2084 2085 2086 2087 2088 2089 2090
        pool_out = _C_ops.max_pool2d_with_index(
            x, pool_size, [1, 1], [0, 0], False, True
        )
        return (
            (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
            if return_mask
            else squeeze(pool_out[0], [2])
        )
2091
    if _in_legacy_dygraph():
2092 2093 2094 2095 2096 2097 2098 2099
        pool_out = _legacy_C_ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True
        )
        return (
            (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
            if return_mask
            else squeeze(pool_out[0], [2])
        )
2100

2101 2102
    l_type = 'max_pool2d_with_index'

2103
    helper = LayerHelper(l_type, **locals())
2104
    dtype = helper.input_dtype(input_param_name='x')
2105 2106
    pool_out = helper.create_variable_for_type_inference(dtype)

2107
    mask = helper.create_variable_for_type_inference('int32')
2108 2109
    outputs = {"Out": pool_out, "Mask": mask}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        },
    )
2120

2121 2122 2123 2124 2125
    return (
        (squeeze(pool_out, [2]), squeeze(mask, [2]))
        if return_mask
        else squeeze(pool_out, [2])
    )
2126 2127


2128
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
2129
    """
2130 2131
    This operation applies a 2D adaptive max pooling on input tensor.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
2132

2133 2134 2135 2136 2137
    Args:
        x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
2138

2139 2140
    Returns:
        Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
2141

2142 2143
    Examples:
        .. code-block:: python
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
          # max adaptive pool2d
          # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
          # of input data into m*n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle
2161

2162 2163 2164 2165 2166
          input_data = paddle.randn(shape=(2, 3, 32, 32))
          out = paddle.nn.functional.adaptive_max_pool2d(
                        x = input_data,
                        output_size=[3, 3])
          # out.shape is [2, 3, 3, 3]
2167
    """
Z
zhiboniu 已提交
2168
    if not in_dynamic_mode():
2169 2170 2171
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool2d'
        )
2172
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
2173
        # check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
2174 2175 2176 2177 2178 2179
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
2180
        output_size = list(output_size)
2181
        if output_size[0] is None:
2182
            output_size[0] = in_h
2183
        if output_size[1] is None:
2184
            output_size[1] = in_w
2185
    if in_dygraph_mode():
2186 2187 2188
        pool_out = _C_ops.max_pool2d_with_index(
            x, output_size, [1, 1], [0, 0], False, True
        )
2189 2190
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
2191 2192 2193
        pool_out = _legacy_C_ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True
        )
2194
        return pool_out if return_mask else pool_out[0]
2195 2196 2197 2198

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
2199
    dtype = helper.input_dtype(input_param_name='x')
2200 2201
    pool_out = helper.create_variable_for_type_inference(dtype)

2202
    mask = helper.create_variable_for_type_inference('int32')
2203 2204
    outputs = {"Out": pool_out, "Mask": mask}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        },
    )
    # return (pool_out, mask) if return_mask else pool_out
2216 2217 2218
    return pool_out


2219
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
2220
    """
2221 2222
    This operation applies a 3D adaptive max pooling on input tensor.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
2223

2224 2225 2226 2227 2228
    Args:
        x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
2229

2230 2231
    Returns:
        Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
2232

2233 2234
    Examples:
        .. code-block:: python
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
          # adaptive max pool3d
          # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
          # of input data into m*n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(i * H / m)
          #                 hend = ceil((i + 1) * H / m)
          #                 wstart = floor(i * W / n)
          #                 wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
          #
          import paddle
2255

2256 2257 2258 2259 2260
          input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
          out = paddle.nn.functional.adaptive_max_pool3d(
                        x = input_data,
                        output_size=[3, 3, 3])
          # out.shape is [2, 3, 3, 3, 3]
2261 2262
    """

Z
zhiboniu 已提交
2263
    if not in_dynamic_mode():
2264 2265 2266
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool3d'
        )
2267
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
2268
        # check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
2269 2270 2271 2272 2273 2274
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
2275
        output_size = list(output_size)
2276
        if output_size[0] is None:
2277
            output_size[0] = in_l
2278
        if output_size[1] is None:
2279
            output_size[1] = in_h
2280
        if output_size[2] is None:
2281 2282
            output_size[2] = in_w

Z
zhiboniu 已提交
2283
    if in_dynamic_mode():
2284 2285
        if in_dygraph_mode():
            # By default, strides is [1,1,1] and paddings is [0, 0, 0]
2286 2287 2288
            pool_out = _C_ops.max_pool3d_with_index(
                x, output_size, [1, 1, 1], [0, 0, 0], False, True
            )
2289 2290
        elif _in_legacy_dygraph():
            pool_out = _legacy_C_ops.max_pool3d_with_index(
2291 2292
                x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True
            )
2293
        return pool_out if return_mask else pool_out[0]
2294 2295 2296 2297

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
2298
    dtype = helper.input_dtype(input_param_name='x')
2299 2300
    pool_out = helper.create_variable_for_type_inference(dtype)

2301
    mask = helper.create_variable_for_type_inference('int32')
2302 2303
    outputs = {"Out": pool_out, "Mask": mask}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        },
    )
2314

2315
    return (pool_out, mask) if return_mask else pool_out