pooling.py 62.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17 18 19
from ...fluid.framework import in_dygraph_mode
from ...fluid.layers import utils, LayerHelper, unsqueeze, squeeze
from ...fluid.data_feeder import check_type, check_variable_and_dtype
20

21
__all__ = [
22
    'avg_pool1d',
23 24
    'avg_pool2d',
    'avg_pool3d',
25
    'max_pool1d',
26 27
    'max_pool2d',
    'max_pool3d',
28 29 30
    'adaptive_avg_pool1d',
    'adaptive_avg_pool2d',
    'adaptive_avg_pool3d',
31 32 33
    'adaptive_max_pool1d',
    'adaptive_max_pool2d',
    'adaptive_max_pool3d',
34 35 36
]


37 38 39 40 41
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
42
    if len(x.shape) != dimension:
43 44 45
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
46 47


48
def _check_instance(x, x_name, types=(int, float)):
49 50 51 52 53 54

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


55 56 57
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
58
    else:
59
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
60 61


62 63 64 65
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
66 67


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
90 91


92 93 94 95 96 97 98 99 100
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
101
                raise ValueError(
102 103 104 105 106 107 108 109 110 111 112 113 114 115
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
116
                raise ValueError(
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
137
    else:
138 139 140 141
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

142

143 144 145 146 147 148 149 150 151 152
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
153 154 155 156 157 158 159
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
160
               exclusive=True,
161 162
               ceil_mode=False,
               name=None):
D
Double_V 已提交
163
    """
164 165
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
166 167 168 169

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
170
                          `L` is the length of the feature. The data type is float32 or float64.
171
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
172
            it must contain an integer.
173
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
174 175 176 177 178 179 180 181
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
182
        exclusive (bool): Whether to exclude padding points in average pooling
183
                          mode, default is `True`.
184
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
185
            If it is set to False, the floor function will be used. The default value is False.
186 187 188 189 190 191 192 193 194
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
195 196
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
197 198 199 200 201 202 203
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn.functional as F
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
204 205
          out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
          # out shape: [1, 3, 16]
206 207 208
    """
    """NCL to NCHW"""
    data_format = "NCHW"
209 210
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
    _check_input(x, 3)
211
    x = unsqueeze(x, [2])
212
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
213 214 215 216 217 218 219
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

220 221 222
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
223

224 225
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
226 227 228 229 230

    if in_dygraph_mode():
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
231
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
232
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
233
            data_format)
234 235 236 237
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
238
    dtype = helper.input_dtype(input_param_name='x')
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
255
            "exclusive": exclusive,
256 257 258 259 260 261
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


262
def avg_pool2d(x,
263 264 265 266
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
267
               exclusive=True,
268 269
               divisor_override=None,
               data_format="NCHW",
270 271
               name=None):
    """
272 273
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
274

275
    Args:
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
296
        exclusive (bool): Whether to exclude padding points in average pooling
297 298 299 300 301
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
302 303 304 305 306 307 308 309 310 311 312 313 314
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn.functional as F
315 316 317 318 319 320 321
          import numpy as np
          # avg pool2d
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
          out = F.avg_pool2d(x,
                                kernel_size=2,
                                stride=2, padding=0)
          # out.shape [1, 3, 16, 16]
322
    """
323 324
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
325 326 327
    if stride is None:
        stride = kernel_size
    else:
328
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
329

330 331 332
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
333 334

    if in_dygraph_mode():
335 336 337 338
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'padding_algorithm', padding_algorithm, 'strides', stride,
            'paddings', padding, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
339
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
340
            data_format)
341 342 343 344 345
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
346

347
    op_type = 'pool2d'
348
    helper = LayerHelper(op_type, **locals())
349
    dtype = helper.input_dtype(input_param_name='x')
350 351 352 353 354
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
355
        outputs={"Out": pool_out},
356
        attrs={
357
            "pooling_type": "avg",
358 359 360 361 362 363 364 365
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
366
            "exclusive": exclusive,
367 368 369
            "data_format": data_format,
        })

370 371 372 373 374
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
375 376


377 378 379 380 381
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
382
               exclusive=True,
383 384 385
               divisor_override=None,
               data_format="NCDHW",
               name=None):
386
    """
387 388
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
389 390

    Args:
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
409
        exclusive (bool): Whether to exclude padding points in average pooling
410 411 412 413 414
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
415
        name(str, optional): For detailed information, please refer
416 417
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
418
    Returns:
419
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
420
    Raises:
421 422 423
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
424 425
    Examples:
        .. code-block:: python
426 427 428 429 430 431 432 433 434 435
          import paddle.fluid as fluid
          import paddle
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
436
    """
437 438 439 440 441 442
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
443

444 445 446
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
447 448

    if in_dygraph_mode():
449 450 451 452
        output = core.ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
453
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
454
            data_format)
455 456 457 458 459 460
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
461

462 463
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
464
    dtype = helper.input_dtype(input_param_name='x')
465 466
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
467 468

    helper.append_op(
469
        type=op_type,
470 471 472
        inputs={"X": x},
        outputs=outputs,
        attrs={
473 474 475 476 477 478 479 480 481
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
482
            "exclusive": exclusive,
483
            "data_format": data_format,
484 485
        })

486 487 488 489 490 491
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
492 493


494
def max_pool1d(x,
495 496 497
               kernel_size,
               stride=None,
               padding=0,
498
               return_mask=False,
499 500 501
               ceil_mode=False,
               name=None):
    """
502 503
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
504 505

    Args:
506 507 508
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
509
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
510
            it must contain an integer.
511
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
512 513 514 515 516 517 518 519
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
520
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
521 522
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
523 524 525 526 527
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
528

529 530 531
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
532
        ShapeError: If the input is not a 3-D tensor.
533
        ShapeError: If the output's shape calculated is not greater than 0.
534

535 536 537 538
    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn.functional as F
539 540 541
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
542
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
543
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
544
    """
545 546 547 548 549 550
    """NCL to NCHW"""
    data_format = "NCHW"
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
551 552 553
    if stride is None:
        stride = kernel_size
    else:
554
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
555

556 557
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
558

559 560
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
561 562

    if in_dygraph_mode():
563
        if return_mask:
D
Double_V 已提交
564 565 566 567 568 569
            pool_out = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
570 571 572
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
573 574 575 576 577 578 579 580 581
        else:
            pool_out = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

582
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
583
    helper = LayerHelper(op_type, **locals())
584
    dtype = helper.input_dtype(input_param_name='x')
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

607
    return (squeeze(pool_out, [2]),
608
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
609 610


611
def max_pool2d(x,
612 613 614
               kernel_size,
               stride=None,
               padding=0,
615
               return_mask=False,
616 617 618 619
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    """
620 621
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
622 623 624 625 626 627 628 629

    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
630
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
631 632
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
633
            it must contain two integers, (stride_Height, stride_Width).
634
            Otherwise, the pool stride size will be a square of an int.
635 636 637 638 639 640 641
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
642
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
643
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
644
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn.functional as F
          import numpy as np
661 662 663
          # max pool2d
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
          out = F.max_pool2d(x,
664 665 666
                                kernel_size=2,
                                stride=2, padding=0)
          # output.shape [1, 3, 16, 16]
667
          # for return_mask=True
668 669 670 671
          out, max_indices = F.max_pool2d(x,
                                             kernel_size=2,
                                             stride=2,
                                             padding=0,
672
                                             return_mask=True)
673
          # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
674
    """
675
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool2d')
676 677 678 679 680 681 682 683 684 685
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
686 687 688 689 690

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
691

692
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
693
        raise ValueError(
694
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
695 696
        )

697
    if in_dygraph_mode():
698
        if return_mask:
D
Double_V 已提交
699 700 701 702 703 704
            output = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
705
            return output if return_mask else output[0]
D
Double_V 已提交
706
        else:
D
Double_V 已提交
707 708 709 710 711 712 713
            output = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
714

715
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
716
    helper = LayerHelper(op_type, **locals())
717
    dtype = helper.input_dtype(input_param_name='x')
718
    pool_out = helper.create_variable_for_type_inference(dtype)
719 720
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
721 722 723 724

    helper.append_op(
        type=op_type,
        inputs={"X": x},
725
        outputs=outputs,
726
        attrs={
727
            "pooling_type": 'max',
728 729 730
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
731
            "paddings": padding,
732 733 734 735
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
736
            "exclusive": True,
737 738 739
            "data_format": data_format,
        })

740
    return (pool_out, mask) if return_mask else pool_out
741 742 743 744 745 746


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
747
               return_mask=False,
748 749 750 751
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
752 753
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
754 755
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
756
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
757
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
758
            is a tuple or list, it must contain three integers,
759
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
760
            Otherwise, the pool kernel size will be the cube of an int.
761 762
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
763
            Otherwise, the pool stride size will be a cube of an int.
764 765 766 767 768 769 770
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
771
        ceil_mode (bool): ${ceil_mode_comment}
772
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn.functional as F
          import numpy as np
790

791
          # max pool3d
792 793
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          output = F.max_pool2d(x,
794 795 796
                                kernel_size=2,
                                stride=2, padding=0)
          output.shape [1, 3, 16, 16, 16]
797
          # for return_mask=True
798 799
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          output, max_indices = paddle.nn.functional.max_pool3d(x,
800 801 802
                                        kernel_size = 2,
                                        stride = 2,
                                        padding=0,
803
                                        return_mask=True)
804 805 806 807 808 809 810 811 812
          # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
    """
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

813
    channel_last = _channel_last(data_format, 3)
814

815 816
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
817

818
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
819
        raise ValueError(
820
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
821 822
        )

823
    if in_dygraph_mode():
824
        if return_mask:
D
Double_V 已提交
825 826 827 828 829 830
            output = core.ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
831
            return output if return_mask else output[0]
D
Double_V 已提交
832
        else:
D
Double_V 已提交
833 834 835 836 837 838 839
            output = core.ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
840

841
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
842
    helper = LayerHelper(op_type, **locals())
843
    dtype = helper.input_dtype(input_param_name='x')
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

866
    return (pool_out, mask) if return_mask else pool_out
867 868


869
def adaptive_avg_pool1d(x, output_size, name=None):
870
    """
871 872
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
873

874
    Args:
875 876 877 878
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
879
        output_size (int): The target output size. It must be an integer.
880
        name(str, optional): For detailed information, please refer
881 882
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
883
    Returns:
884 885
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
886
    Raises:
887
            ValueError: 'output_size' should be an integer.
888 889
    Examples:
        .. code-block:: python
890 891 892 893 894 895 896 897 898 899 900 901 902 903
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
904

905 906 907 908 909 910 911 912
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'adaptive_pool2d')
    _check_input(x, 3)
    check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
913

914
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
915

916 917
    l_type = "pool2d"
    x = unsqueeze(x, [2])
918
    if in_dygraph_mode():
919 920 921
        pool_out = core.ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                   pool_size, 'adaptive', True)
        return squeeze(pool_out, [2])
922

923
    helper = LayerHelper(l_type, **locals())
924
    dtype = helper.input_dtype(input_param_name='x')
925 926
    pool_out = helper.create_variable_for_type_inference(dtype)

927
    outputs = {"Out": pool_out}
928
    helper.append_op(
929
        type=l_type,
930 931 932
        inputs={"X": x},
        outputs=outputs,
        attrs={
933 934 935
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
936 937
        })

938
    return squeeze(pool_out, [2])
939 940


941 942
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
943 944
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
945 946 947

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
948
                          The data type can be float32 or float64.
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
981

982 983 984
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
985
            out = paddle.nn.functional.adaptive_avg_pool2d(
986 987
                            x = x,
                            output_size=[3, 3])
988
            # out.shape is [2, 3, 3, 3]
989 990
    """
    if not in_dygraph_mode():
991 992
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool2d')
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1008
        output_size = list(output_size)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        output = core.ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1023
    dtype = helper.input_dtype(input_param_name='x')
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1044 1045
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1046 1047 1048

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1049
                          The data type can be float32, float64.
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
1085

1086 1087 1088
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1089
            out = paddle.nn.functional.adaptive_avg_pool3d(
1090 1091
                            x = x,
                            output_size=[3, 3, 3])
1092
            # out.shape is [2, 3, 3, 3, 3]
1093 1094
    """
    if not in_dygraph_mode():
1095 1096
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1112
        output_size = list(output_size)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        output = core.ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1129
    dtype = helper.input_dtype(input_param_name='x')
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1145 1146


1147
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1148 1149 1150 1151 1152 1153 1154 1155 1156
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1157
        output_size (int): The pool kernel size. The value should be an integer.
1158
        return_mask (bool): If true, the index of max pooling point will be returned along
1159 1160 1161 1162 1163 1164 1165 1166
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1167
            ValueError: 'output_size' should be an integer.
1168 1169
    Examples:
        .. code-block:: python
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
1185

1186 1187 1188
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1189
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1190 1191 1192 1193 1194 1195
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'adaptive_max_pool1d')
    _check_input(x, 3)
1196
    check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
1197
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    l_type = 'max_pool2d_with_index'

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1208
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1209 1210

    helper = LayerHelper(l_type, **locals())
1211
    dtype = helper.input_dtype(input_param_name='x')
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1228
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1229 1230


1231
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1232 1233 1234
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1235

1236 1237 1238
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1239
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1240
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1241

1242 1243
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1244

1245 1246
        Examples:
            .. code-block:: python
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
    _check_input(x, 4)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1279
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
1280 1281 1282 1283 1284

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1285
        output_size = list(output_size)
1286 1287 1288 1289 1290 1291 1292 1293
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1294
        return pool_out if return_mask else pool_out[0]
1295 1296 1297 1298

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1299
    dtype = helper.input_dtype(input_param_name='x')
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1314
    #return (pool_out, mask) if return_mask else pool_out
1315 1316 1317
    return pool_out


1318
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1319 1320 1321
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1322

1323 1324 1325
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1326
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1327
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1328

1329 1330
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1331

1332 1333
        Examples:
            .. code-block:: python
1334

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
    _check_input(x, 5)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1370
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
1371 1372 1373 1374 1375

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1376
        output_size = list(output_size)
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool3d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1387
        return pool_out if return_mask else pool_out[0]
1388 1389 1390 1391

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1392
    dtype = helper.input_dtype(input_param_name='x')
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1408
    return (pool_out, mask) if return_mask else pool_out