pooling.py 85.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
21 22
from paddle.fluid.framework import _in_legacy_dygraph, Variable
from paddle.fluid.framework import in_dygraph_mode, _non_static_mode
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
36 37


38
def _check_instance(x, x_name, types=(int, float)):
39 40

    if not isinstance(x, types):
41 42 43
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
                types, x_name, type(x)))
44 45


D
Double_V 已提交
46
def _check_value_limitation(x, x_name, min_limit=1e-3):
47

D
Double_V 已提交
48 49 50
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
51 52
                "Excepted the input {} to be greater than {} but received x: {}. "
                .format(x_name, min_limit, x))
D
Double_V 已提交
53 54 55 56 57

    for ele in x:
        _check_value(ele, x_name)


58 59 60
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
61
    else:
62
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
63 64


65 66 67 68
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
69 70


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
93 94


95 96 97 98 99 100 101 102 103
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
104
                raise ValueError(
105 106 107 108 109 110 111 112 113 114 115 116 117 118
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
119
                raise ValueError(
120 121 122
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
123 124
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
140
    else:
141 142 143 144
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

145

146 147 148 149 150 151 152 153
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
154 155
            "The size of padding's dimmention should be 1 or 2. But got padding={}"
            .format(padding))
156 157 158 159 160 161 162
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
163
               exclusive=True,
164 165
               ceil_mode=False,
               name=None):
D
Double_V 已提交
166
    """
167 168
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
169 170 171 172

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
173
                          `L` is the length of the feature. The data type is float32 or float64.
174
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
175
            it must contain an integer.
176
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
177 178 179 180 181 182 183 184
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
185
        exclusive (bool): Whether to exclude padding points in average pooling
186
                          mode, default is `True`.
187
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
188
            If it is set to False, the floor function will be used. The default value is False.
189 190 191 192 193 194 195 196
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
197

C
Chen Long 已提交
198
            import paddle
199
            import paddle.nn as nn
C
Chen Long 已提交
200

201 202 203 204
            data = paddle.uniform([1, 3, 32], paddle.float32)
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
205 206 207
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
208
    if not in_dynamic_mode():
209
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
210
    _check_input(x, 3)
211
    x = unsqueeze(x, [2])
212
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
213 214 215 216 217 218 219
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
220 221 222
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

223
    channel_last = _channel_last("NCL", 1)
224 225 226 227
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
228

229 230
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
231

232 233 234 235 236 237 238
    if in_dygraph_mode():
        output = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                               exclusive, data_format, 'avg', False, False,
                               padding_algorithm, True)
        return squeeze(output, [2])

    if _in_legacy_dygraph():
239 240 241 242 243 244 245
        output = _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                      kernel_size, 'global_pooling', False,
                                      'strides', stride, 'paddings', padding,
                                      'padding_algorithm', padding_algorithm,
                                      'use_cudnn', True, 'ceil_mode', ceil_mode,
                                      'use_mkldnn', False, 'exclusive',
                                      exclusive, 'data_format', data_format)
246 247 248 249
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
250
    dtype = helper.input_dtype(input_param_name='x')
251 252
    pool_out = helper.create_variable_for_type_inference(dtype)

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
269 270 271 272

    return squeeze(pool_out, [2])


273
def avg_pool2d(x,
274 275 276 277
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
278
               exclusive=True,
279 280
               divisor_override=None,
               data_format="NCHW",
281 282
               name=None):
    """
283 284
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
285

286
    Args:
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
307
        exclusive (bool): Whether to exclude padding points in average pooling
308 309 310 311 312
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
313 314 315
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
316

317 318
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
319

320 321
    Examples:
        .. code-block:: python
322

C
Chen Long 已提交
323 324
            import paddle
            import paddle.nn.functional as F
325

C
Chen Long 已提交
326
            # avg pool2d
327
            x = paddle.uniform([1, 3, 32, 32], paddle.float32)
C
Chen Long 已提交
328 329 330 331
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
332
    """
333
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
334 335 336
    if stride is None:
        stride = kernel_size
    else:
337
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
338

D
Double_V 已提交
339 340 341
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

342
    channel_last = _channel_last(data_format, 2)
343 344 345 346
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    2,
                                                    channel_last,
                                                    ceil_mode=ceil_mode)
347

348
    if _non_static_mode():
F
From00 已提交
349
        if in_dygraph_mode():
350 351
            output = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                   exclusive, data_format, 'avg', False, False,
352
                                   padding_algorithm, True)
F
From00 已提交
353
        else:
354 355 356 357 358 359
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'avg', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive',
                exclusive, 'data_format', data_format)
360 361 362 363 364
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
365

366
    op_type = 'pool2d'
367
    helper = LayerHelper(op_type, **locals())
368
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
369
    dtype = helper.input_dtype(input_param_name='x')
370 371
    pool_out = helper.create_variable_for_type_inference(dtype)

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": "avg",
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
388

389 390 391 392 393
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
394 395


396 397 398 399 400
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
401
               exclusive=True,
402 403 404
               divisor_override=None,
               data_format="NCDHW",
               name=None):
405
    """
406 407
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
408 409

    Args:
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
428
        exclusive (bool): Whether to exclude padding points in average pooling
429 430 431 432 433
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
434
        name(str, optional): For detailed information, please refer
435 436
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
437

438
    Returns:
439
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
440

441 442
    Examples:
        .. code-block:: python
443

444
          import paddle
C
Chen Long 已提交
445

446
          x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
447 448 449 450 451 452 453
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
454
    """
455 456 457 458 459
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
460

461
    channel_last = _channel_last(data_format, 3)
462 463 464 465
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
466

D
Double_V 已提交
467 468 469
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    if in_dygraph_mode():
        pool_out = _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                 exclusive, data_format, 'avg', False, False,
                                 padding_algorithm, True)
    elif _in_legacy_dygraph():
        pool_out = _legacy_C_ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
            data_format)
    else:
        op_type = "pool3d"
        helper = LayerHelper(op_type, **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
        dtype = helper.input_dtype(input_param_name='x')
        pool_out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": pool_out}

        helper.append_op(type=op_type,
                         inputs={"X": x},
                         outputs=outputs,
                         attrs={
                             "pooling_type": 'avg',
                             "ksize": kernel_size,
                             "global_pooling": False,
                             "strides": stride,
                             "paddings": padding,
                             "padding_algorithm": padding_algorithm,
                             "use_cudnn": True,
                             "ceil_mode": ceil_mode,
                             "use_mkldnn": False,
                             "exclusive": exclusive,
                             "data_format": data_format,
                         })
505

506 507 508 509 510 511
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
512 513


514
def max_pool1d(x,
515 516 517
               kernel_size,
               stride=None,
               padding=0,
518
               return_mask=False,
519 520 521
               ceil_mode=False,
               name=None):
    """
522 523
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
524 525

    Args:
526 527 528
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
529
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
530
            it must contain an integer.
531
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
532 533 534 535 536 537 538 539
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
540
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
541 542
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
543 544 545 546 547
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
548

549 550
    Examples:
        .. code-block:: python
551

552 553
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
554

555
          data = paddle.uniform([1, 3, 32], paddle.float32)
556 557
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
558
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
559
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
560
    """
561 562
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
563
    if not in_dynamic_mode():
564
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
565 566 567
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
568 569 570
    if stride is None:
        stride = kernel_size
    else:
571
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
572

573 574 575
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    ceil_mode=ceil_mode)
576

577 578
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
579

F
From00 已提交
580 581
    if in_dygraph_mode():
        if return_mask:
582 583
            pool_out = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                    padding, False, False)
F
From00 已提交
584
            return (squeeze(pool_out[0], [2]),
585 586
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
F
From00 已提交
587
        else:
588 589
            pool_out = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                     True, data_format, 'max', False, False,
590
                                     padding_algorithm, True)
F
From00 已提交
591 592 593
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
594
        if return_mask:
595
            pool_out = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
596 597 598 599 600
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
601
            return (squeeze(pool_out[0], [2]),
602 603
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
D
Double_V 已提交
604
        else:
605 606 607 608 609 610
            pool_out = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
611 612
            return squeeze(pool_out, [2])

613
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
614
    helper = LayerHelper(op_type, **locals())
615
    dtype = helper.input_dtype(input_param_name='x')
616
    pool_out = helper.create_variable_for_type_inference(dtype)
617
    mask = helper.create_variable_for_type_inference('int32')
618 619
    outputs = {"Out": pool_out, "Mask": mask}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
636

637
    return (squeeze(pool_out, [2]),
638
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
639 640


641
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
642 643 644
    assert output_size is None or isinstance(
        output_size, (list, tuple)
    ), "Required output_size is None|list|tuple, but received %s" % output_size
645 646 647
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
648 649
        default_size.append((input_size[-len(kernel_size) + d] - 1) *
                            stride[d] + kernel_size[d] - 2 * padding[d])
650 651

    has_static_var = False
652
    if output_size is None:
653
        return default_size
654 655 656 657 658 659 660 661
    elif utils._contain_var(output_size):
        if not _non_static_mode():
            has_static_var = True
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            for i, var in enumerate(output_size):
                if isinstance(var, Variable):
                    output_size[i] = var.numpy()[0]
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

    if len(output_size) == len(kernel_size) + 2:
        output_size = output_size[2:]
    if len(output_size) != len(kernel_size):
        raise ValueError(
            "output_size should be a sequence containing "
            "{} or {} elements, but it has a length of '{}'".format(
                len(kernel_size),
                len(kernel_size) + 2, len(output_size)))
    if not has_static_var:
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
                    'invalid output_size "{}" (dim {} must be between {} and {})'
                    .format(output_size, d, min_size, max_size))

    return output_size
681 682


683 684 685 686 687 688 689 690
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
691
    r"""
692
    This API implements max unpooling 1d opereation.
693 694
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
695 696 697 698
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
699

700 701 702 703 704 705 706 707
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
708
                          shape [N, C, L]. The format of input tensor is `"NCL"`,
709 710 711
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
712
                          shape [N, C, L]. The format of input tensor is `"NCL"` ,
713 714 715 716 717 718 719
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
720
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
721 722 723 724 725 726 727 728 729 730
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
731
        Tensor: The output tensor of unpooling result.
732 733 734

    Examples:
        .. code-block:: python
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
765
    if in_dygraph_mode():
766 767
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
X
xiaoting 已提交
768 769
        return squeeze(output, [2])
    elif in_dynamic_mode():
770 771 772 773
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
774 775 776 777 778 779 780
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

781 782 783 784 785 786 787 788 789 790 791 792 793
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
794 795 796
    return squeeze(unpool_out, [2])


797 798 799 800 801 802 803 804
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
805
    r"""
806
    This API implements max unpooling 2d opereation.
807
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
808

809 810

    Args:
811
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
812
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`,
813
                          where `N` is batch size, `C` is the number of channels,
814 815
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
816
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
817
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` ,
818 819 820 821 822 823 824 825
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
826
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
827 828
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
829 830 831
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
832

833 834 835 836 837 838 839 840 841 842 843 844 845

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
846
            Tensor: The output tensor of unpooling result.
847 848 849 850

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
851

852 853 854

        Examples:
            .. code-block:: python
855

C
Chen Long 已提交
856 857
            import paddle
            import paddle.nn.functional as F
858

859
            data = paddle.rand(shape=[1,1,6,6])
860 861 862 863 864
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

865
            # specify a different output size than input size
866
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
867
            # unpool_out shape: [1, 1, 7, 7]
868

869 870
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
871 872 873 874 875 876 877 878 879 880 881 882 883
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
884
    if in_dygraph_mode():
885 886
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
887
        return output
X
xiaoting 已提交
888
    elif in_dynamic_mode():
889 890 891 892
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
893 894 895 896 897 898 899
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

900 901 902 903 904 905 906 907 908 909 910 911 912
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
913 914 915
    return unpool_out


916 917 918 919 920 921 922 923
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
924
    r"""
925
    This API implements max unpooling 3d opereation.
926 927
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
928 929 930 931
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
932

933 934 935 936 937 938 939 940 941 942 943 944 945 946
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
947
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`,
948
                          where `N` is batch size, `C` is the number of channels, `D` is
949
                          the depth of the feature, `H` is the height of the feature,
950 951
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
952
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` ,
953
                          where `N` is batch size, `C` is the number of channels, `D` is
954
                          the depth of the feature, `H` is the height of the feature,
955 956 957 958 959 960
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
961
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
962 963 964 965 966 967 968 969 970 971
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
972
        Tensor: The output tensor of unpooling result.
973 974 975

    Examples:
        .. code-block:: python
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
1001
    if in_dygraph_mode():
1002 1003
        output = _C_ops.unpool3d(x, indices, kernel_size, stride, padding,
                                 output_size, data_format)
1004
        return output
X
xiaoting 已提交
1005
    elif in_dynamic_mode():
1006 1007 1008 1009
        output = _legacy_C_ops.unpool3d(x, indices, 'unpooling_type', 'max',
                                        'ksize', kernel_size, 'strides', stride,
                                        'paddings', padding, "output_size",
                                        output_size, "data_format", data_format)
1010 1011 1012 1013 1014 1015 1016
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
1030 1031 1032
    return unpool_out


1033 1034 1035 1036 1037 1038 1039 1040
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
W
Wei Shengyu 已提交
1041 1042 1043
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
W
Wei Shengyu 已提交
1044

W
Wei Shengyu 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
W
Wei Shengyu 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

          import paddle
          import paddle.nn.functional as F

          # max pool2d
          x = paddle.uniform([1, 3, 32, 32], paddle.float32)
          out = F.max_pool2d(x, kernel_size=2, stride=2, padding=0)
          # output.shape [1, 3, 16, 16]
          # for return_mask=True
          out, max_indices = F.max_pool2d(x, kernel_size=2, stride=2, padding=0, return_mask=True)
          # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
W
Wei Shengyu 已提交
1088
    """
W
Wei Shengyu 已提交
1089

1090
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1091 1092 1093 1094 1095 1096 1097 1098 1099
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1100 1101 1102

    channel_last = True if data_format == "NHWC" else False

1103 1104 1105 1106
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    num_dims=2,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1107

1108
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1109
        raise ValueError(
1110
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1111 1112
        )

F
From00 已提交
1113 1114
    if in_dygraph_mode():
        if return_mask:
1115 1116
            output = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1117 1118
            return output if return_mask else output[0]
        else:
1119 1120
            return _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
1121
                                 padding_algorithm, True)
F
From00 已提交
1122 1123

    if _in_legacy_dygraph():
1124
        if return_mask:
1125
            output = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
1126 1127 1128 1129 1130
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1131
            return output if return_mask else output[0]
D
Double_V 已提交
1132
        else:
1133 1134 1135 1136 1137 1138
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1139
            return output
1140

1141
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1142
    helper = LayerHelper(op_type, **locals())
1143 1144
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1145
    dtype = helper.input_dtype(input_param_name='x')
1146
    pool_out = helper.create_variable_for_type_inference(dtype)
1147
    mask = helper.create_variable_for_type_inference("int32")
1148
    outputs = {"Out": pool_out, "Mask": mask}
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
1166

1167
    return (pool_out, mask) if return_mask else pool_out
1168 1169 1170 1171 1172 1173


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1174
               return_mask=False,
1175 1176 1177 1178
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1179 1180
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
W
Wei Shengyu 已提交
1181

1182 1183
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1184
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1185
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1186
            is a tuple or list, it must contain three integers,
1187
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1188
            Otherwise, the pool kernel size will be the cube of an int.
1189 1190
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1191
            Otherwise, the pool stride size will be a cube of an int.
1192 1193 1194 1195 1196 1197 1198
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1199
        ceil_mode (bool): ${ceil_mode_comment}
1200
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1201 1202 1203 1204 1205 1206
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1207

1208 1209
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
W
Wei Shengyu 已提交
1210

1211 1212
    Examples:
        .. code-block:: python
1213

W
Wei Shengyu 已提交
1214 1215
          import paddle
          import paddle.nn.functional as F
1216

W
Wei Shengyu 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
          # max pool3d
          x = paddle.uniform([1, 3, 32, 32, 32])
          output = F.max_pool3d(x,
                                kernel_size=2,
                                stride=2, padding=0)
          # output.shape [1, 3, 16, 16, 16]
          # for return_mask=True
          x = paddle.uniform([1, 3, 32, 32, 32])
          output, max_indices = paddle.nn.functional.max_pool3d(x,
                                                                kernel_size=2,
                                                                stride=2,
                                                                padding=0,
                                                                return_mask=True)

          # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1232
    """
W
Wei Shengyu 已提交
1233

1234 1235 1236 1237 1238 1239
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1240
    channel_last = _channel_last(data_format, 3)
1241

1242 1243 1244 1245
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1246

1247
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1248
        raise ValueError(
1249
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1250 1251
        )

F
From00 已提交
1252 1253
    if in_dygraph_mode():
        if return_mask:
1254 1255
            output = _C_ops.max_pool3d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1256 1257
            return output if return_mask else output[0]
        else:
1258 1259
            return _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
1260
                                 padding_algorithm, True)
F
From00 已提交
1261 1262

    if _in_legacy_dygraph():
1263
        if return_mask:
1264
            output = _legacy_C_ops.max_pool3d_with_index(
D
Double_V 已提交
1265 1266 1267 1268 1269
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1270
            return output if return_mask else output[0]
D
Double_V 已提交
1271
        else:
1272 1273 1274 1275 1276 1277
            output = _legacy_C_ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1278
            return output
1279

1280
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1281
    helper = LayerHelper(op_type, **locals())
1282
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1283
    dtype = helper.input_dtype(input_param_name='x')
1284
    pool_out = helper.create_variable_for_type_inference(dtype)
1285
    mask = helper.create_variable_for_type_inference('int32')
1286 1287
    outputs = {"Out": pool_out, "Mask": mask}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": False,
                         "data_format": data_format,
                     })
1304

1305
    return (pool_out, mask) if return_mask else pool_out
1306 1307


1308
def adaptive_avg_pool1d(x, output_size, name=None):
1309
    """
1310 1311
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`.

1312 1313
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1314

1315
    Args:
1316 1317 1318
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1319

1320
    Returns:
1321
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1322

1323 1324
    Examples:
        .. code-block:: python
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1344 1345
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1346
    if not in_dynamic_mode():
1347 1348 1349
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1350 1351
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1352

1353
    x = unsqueeze(x, [2])
1354 1355 1356 1357 1358 1359
    if in_dygraph_mode():
        pool_out = _C_ops.pool2d(x, pool_size, [1, 1], [0, 0], False, True,
                                 "NCHW", pool_type, False, True, "EXPLICIT",
                                 False)
        return squeeze(pool_out, [2])
    if _in_legacy_dygraph():
1360 1361
        pool_out = _legacy_C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                        pool_size, 'adaptive', True)
1362
        return squeeze(pool_out, [2])
1363

1364 1365
    l_type = "pool2d"

1366
    helper = LayerHelper(l_type, **locals())
1367
    dtype = helper.input_dtype(input_param_name='x')
1368 1369
    pool_out = helper.create_variable_for_type_inference(dtype)

1370
    outputs = {"Out": pool_out}
1371 1372 1373 1374 1375 1376 1377 1378
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1379

1380
    return squeeze(pool_out, [2])
1381 1382


1383
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
1384
    r"""
1385 1386
    Applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1387

1388 1389 1390 1391 1392 1393 1394
    For avg adaptive pool2d:
    ..  math::
        hstart &= floor(i * H_{in} / H_{out})
        hend &= ceil((i + 1) * H_{in} / H_{out})
        wstart &= floor(j * W_{in} / W_{out})
        wend &= ceil((j + 1) * W_{in} / W_{out})
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
1395 1396 1397

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1398
                          The data type can be float32 or float64.
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1410

1411 1412
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1431

1432 1433 1434
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1435
            out = paddle.nn.functional.adaptive_avg_pool2d(
1436 1437
                            x = x,
                            output_size=[3, 3])
1438
            # out.shape is [2, 3, 3, 3]
1439
    """
Z
zhiboniu 已提交
1440
    if not in_dynamic_mode():
1441
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1442
                                 'adaptive_avg_pool2d')
1443
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1458
        output_size = list(output_size)
1459
        if output_size[0] is None:
1460
            output_size[0] = in_h
1461
        if output_size[1] is None:
1462 1463
            output_size[1] = in_w

1464 1465 1466 1467 1468 1469 1470 1471 1472
    if _non_static_mode():
        output_size = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in output_size
        ]
    # output_size support Variable in static mode
    elif utils._contain_var(output_size):
        output_size = utils._convert_to_tensor_list(output_size)

F
From00 已提交
1473
    if in_dygraph_mode():
1474 1475
        return _C_ops.pool2d(x, output_size, [1, 1], [0, 0], False, True,
                             data_format, 'avg', False, True, "EXPLICIT", False)
F
From00 已提交
1476 1477

    if _in_legacy_dygraph():
1478 1479 1480 1481
        return _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1482 1483 1484 1485

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1486
    dtype = helper.input_dtype(input_param_name='x')
1487 1488 1489 1490
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1491 1492 1493 1494 1495 1496 1497 1498 1499
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1500 1501 1502 1503 1504

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
1505
    r"""
1506 1507
    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    For avg adaptive pool3d:
    ..  math::
        dstart &= floor(i * D_{in} / D_{out})
        dend &= ceil((i + 1) * D_{in} / D_{out})
        hstart &= floor(j * H_{in} / H_{out})
        hend &= ceil((j + 1) * H_{in} / H_{out})
        wstart &= floor(k * W_{in} / W_{out})
        wend &= ceil((k + 1) * W_{in} / W_{out})
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
1519 1520 1521

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1522
                          The data type can be float32, float64.
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
1534

1535 1536
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1557 1558

            input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1559
            out = paddle.nn.functional.adaptive_avg_pool3d(
1560
                            x = input_data,
1561
                            output_size=[3, 3, 3])
1562
            # out.shape is [2, 3, 3, 3, 3]
1563
    """
Z
zhiboniu 已提交
1564
    if not in_dynamic_mode():
1565 1566
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1567
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1582
        output_size = list(output_size)
1583
        if output_size[0] is None:
1584
            output_size[0] = in_l
1585
        if output_size[1] is None:
1586
            output_size[1] = in_h
1587
        if output_size[2] is None:
1588 1589
            output_size[2] = in_w

1590 1591 1592 1593
    if in_dygraph_mode():
        return _C_ops.pool3d(x, output_size, [1, 1, 1], [0, 0, 0], False, True,
                             data_format, 'avg', False, True, "EXPLICIT", False)
    elif _in_legacy_dygraph():
1594 1595 1596 1597
        return _legacy_C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1598 1599 1600 1601

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1602
    dtype = helper.input_dtype(input_param_name='x')
1603 1604 1605
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

1606 1607 1608 1609 1610 1611 1612 1613 1614
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1615 1616

    return pool_out
1617 1618


1619
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1620 1621 1622 1623 1624 1625 1626 1627 1628
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1629
        output_size (int): The pool kernel size. The value should be an integer.
1630
        return_mask (bool): If true, the index of max pooling point will be returned along
1631 1632 1633 1634 1635 1636 1637
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
1638

1639 1640
    Examples:
        .. code-block:: python
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
1656

1657
              data = paddle.uniform([1, 3, 32], paddle.float32)
1658 1659
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1660
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1661 1662 1663
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
1664
    if not in_dynamic_mode():
1665 1666 1667 1668
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1669 1670 1671 1672 1673
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
1674
    if in_dygraph_mode():
1675 1676
        pool_out = _C_ops.max_pool2d_with_index(x, pool_size, [1, 1], [0, 0],
                                                False, True)
1677 1678 1679
        return (squeeze(pool_out[0], [2]), squeeze(
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
    if _in_legacy_dygraph():
1680 1681 1682 1683
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type',
                                                       pool_type, 'ksize',
                                                       pool_size, 'adaptive',
                                                       True)
1684
        return (squeeze(pool_out[0], [2]), squeeze(
1685
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1686

1687 1688
    l_type = 'max_pool2d_with_index'

1689
    helper = LayerHelper(l_type, **locals())
1690
    dtype = helper.input_dtype(input_param_name='x')
1691 1692
    pool_out = helper.create_variable_for_type_inference(dtype)

1693
    mask = helper.create_variable_for_type_inference('int32')
1694 1695
    outputs = {"Out": pool_out, "Mask": mask}

1696 1697 1698 1699 1700 1701 1702 1703
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1704 1705

    return (squeeze(pool_out, [2]),
1706
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1707 1708


1709
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1710 1711 1712
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1713

1714 1715 1716
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1717
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1718
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1719

1720 1721
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1722

1723 1724
        Examples:
            .. code-block:: python
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
1742

1743
              input_data = paddle.randn(shape=(2, 3, 32, 32))
1744
              out = paddle.nn.functional.adaptive_max_pool2d(
1745
                            x = input_data,
1746 1747 1748
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
Z
zhiboniu 已提交
1749
    if not in_dynamic_mode():
1750 1751
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1752 1753
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1754 1755 1756 1757 1758 1759
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1760
        output_size = list(output_size)
1761 1762 1763 1764
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w
1765
    if in_dygraph_mode():
1766 1767
        pool_out = _C_ops.max_pool2d_with_index(x, output_size, [1, 1], [0, 0],
                                                False, True)
1768 1769
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
1770 1771 1772
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type', 'max',
                                                       'ksize', output_size,
                                                       'adaptive', True)
1773
        return pool_out if return_mask else pool_out[0]
1774 1775 1776 1777

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1778
    dtype = helper.input_dtype(input_param_name='x')
1779 1780
    pool_out = helper.create_variable_for_type_inference(dtype)

1781
    mask = helper.create_variable_for_type_inference('int32')
1782 1783
    outputs = {"Out": pool_out, "Mask": mask}

1784 1785 1786 1787 1788 1789 1790 1791
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1792
    #return (pool_out, mask) if return_mask else pool_out
1793 1794 1795
    return pool_out


1796
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1797 1798 1799
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1800

1801 1802 1803
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1804
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1805
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1806

1807 1808
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1809

1810 1811
        Examples:
            .. code-block:: python
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
1832

1833
              input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1834
              out = paddle.nn.functional.adaptive_max_pool3d(
1835
                            x = input_data,
1836 1837 1838 1839
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

Z
zhiboniu 已提交
1840
    if not in_dynamic_mode():
1841 1842
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1843 1844
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1845 1846 1847 1848 1849 1850
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1851
        output_size = list(output_size)
1852 1853 1854 1855 1856 1857 1858
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1859
    if in_dynamic_mode():
1860 1861 1862 1863 1864 1865 1866 1867
        if in_dygraph_mode():
            # By default, strides is [1,1,1] and paddings is [0, 0, 0]
            pool_out = _C_ops.max_pool3d_with_index(x, output_size, [1, 1, 1],
                                                    [0, 0, 0], False, True)
        elif _in_legacy_dygraph():
            pool_out = _legacy_C_ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive',
                True)
1868
        return pool_out if return_mask else pool_out[0]
1869 1870 1871 1872

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1873
    dtype = helper.input_dtype(input_param_name='x')
1874 1875
    pool_out = helper.create_variable_for_type_inference(dtype)

1876
    mask = helper.create_variable_for_type_inference('int32')
1877 1878
    outputs = {"Out": pool_out, "Mask": mask}

1879 1880 1881 1882 1883 1884 1885 1886
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1887

1888
    return (pool_out, mask) if return_mask else pool_out