pooling.py 63.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17 18 19
from ...fluid.framework import in_dygraph_mode
from ...fluid.layers import utils, LayerHelper, unsqueeze, squeeze
from ...fluid.data_feeder import check_type, check_variable_and_dtype
20

21 22
__all__ = []

23

24 25 26 27 28
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
29
    if len(x.shape) != dimension:
30 31 32
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
33 34


35
def _check_instance(x, x_name, types=(int, float)):
36 37 38 39 40 41

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


42 43 44
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
45
    else:
46
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
47 48


49 50 51 52
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
53 54


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
77 78


79 80 81 82 83 84 85 86 87
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
88
                raise ValueError(
89 90 91 92 93 94 95 96 97 98 99 100 101 102
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
103
                raise ValueError(
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
124
    else:
125 126 127 128
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

129

130 131 132 133 134 135 136 137 138 139
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
140 141 142 143 144 145 146
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
147
               exclusive=True,
148 149
               ceil_mode=False,
               name=None):
D
Double_V 已提交
150
    """
151 152
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
153 154 155 156

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
157
                          `L` is the length of the feature. The data type is float32 or float64.
158
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
159
            it must contain an integer.
160
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
161 162 163 164 165 166 167 168
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
169
        exclusive (bool): Whether to exclude padding points in average pooling
170
                          mode, default is `True`.
171
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
172
            If it is set to False, the floor function will be used. The default value is False.
173 174 175 176 177 178 179 180 181
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
182 183
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
184 185 186 187
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
188 189 190 191 192 193 194 195
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
196 197 198
    """
    """NCL to NCHW"""
    data_format = "NCHW"
199 200
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
    _check_input(x, 3)
201
    x = unsqueeze(x, [2])
202
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
203 204 205 206 207 208 209
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

210 211 212
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
213

214 215
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
216 217 218 219 220

    if in_dygraph_mode():
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
221
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
222
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
223
            data_format)
224 225 226 227
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
228
    dtype = helper.input_dtype(input_param_name='x')
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
245
            "exclusive": exclusive,
246 247 248 249 250 251
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


252
def avg_pool2d(x,
253 254 255 256
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
257
               exclusive=True,
258 259
               divisor_override=None,
               data_format="NCHW",
260 261
               name=None):
    """
262 263
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
264

265
    Args:
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
286
        exclusive (bool): Whether to exclude padding points in average pooling
287 288 289 290 291
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
292 293 294
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
295
    
296 297
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
298
    
299 300 301 302
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
303
    
304 305
    Examples:
        .. code-block:: python
C
Chen Long 已提交
306 307 308 309 310 311 312 313 314 315 316
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
317
    """
318 319
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
320 321 322
    if stride is None:
        stride = kernel_size
    else:
323
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
324

325 326 327
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
328 329

    if in_dygraph_mode():
330 331 332 333
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'padding_algorithm', padding_algorithm, 'strides', stride,
            'paddings', padding, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
334
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
335
            data_format)
336 337 338 339 340
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
341

342
    op_type = 'pool2d'
343
    helper = LayerHelper(op_type, **locals())
344
    dtype = helper.input_dtype(input_param_name='x')
345 346 347 348 349
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
350
        outputs={"Out": pool_out},
351
        attrs={
352
            "pooling_type": "avg",
353 354 355 356 357 358 359 360
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
361
            "exclusive": exclusive,
362 363 364
            "data_format": data_format,
        })

365 366 367 368 369
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
370 371


372 373 374 375 376
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
377
               exclusive=True,
378 379 380
               divisor_override=None,
               data_format="NCDHW",
               name=None):
381
    """
382 383
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
384 385

    Args:
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
404
        exclusive (bool): Whether to exclude padding points in average pooling
405 406 407 408 409
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
410
        name(str, optional): For detailed information, please refer
411 412
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
413
    
414
    Returns:
415
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
416
    
417
    Raises:
418 419 420
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
421
    
422 423
    Examples:
        .. code-block:: python
C
Chen Long 已提交
424
          
425
          import paddle
C
Chen Long 已提交
426 427
          import numpy as np

428 429 430 431 432 433 434 435
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
436
    """
437 438 439 440 441 442
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
443

444 445 446
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
447 448

    if in_dygraph_mode():
449 450 451 452
        output = core.ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
453
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
454
            data_format)
455 456 457 458 459 460
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
461

462 463
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
464
    dtype = helper.input_dtype(input_param_name='x')
465 466
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
467 468

    helper.append_op(
469
        type=op_type,
470 471 472
        inputs={"X": x},
        outputs=outputs,
        attrs={
473 474 475 476 477 478 479 480 481
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
482
            "exclusive": exclusive,
483
            "data_format": data_format,
484 485
        })

486 487 488 489 490 491
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
492 493


494
def max_pool1d(x,
495 496 497
               kernel_size,
               stride=None,
               padding=0,
498
               return_mask=False,
499 500 501
               ceil_mode=False,
               name=None):
    """
502 503
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
504 505

    Args:
506 507 508
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
509
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
510
            it must contain an integer.
511
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
512 513 514 515 516 517 518 519
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
520
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
521 522
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
523 524 525 526 527
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
528

529 530 531
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
532
        ShapeError: If the input is not a 3-D tensor.
533
        ShapeError: If the output's shape calculated is not greater than 0.
534

535 536
    Examples:
        .. code-block:: python
537

538 539
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
540 541
          import numpy as np

542 543 544
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
545
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
546
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
547
    """
548 549 550 551 552 553
    """NCL to NCHW"""
    data_format = "NCHW"
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
554 555 556
    if stride is None:
        stride = kernel_size
    else:
557
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
558

559 560
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
561

562 563
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
564 565

    if in_dygraph_mode():
566
        if return_mask:
D
Double_V 已提交
567 568 569 570 571 572
            pool_out = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
573 574 575
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
576 577 578 579 580 581 582 583 584
        else:
            pool_out = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

585
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
586
    helper = LayerHelper(op_type, **locals())
587
    dtype = helper.input_dtype(input_param_name='x')
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

610
    return (squeeze(pool_out, [2]),
611
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
612 613


614
def max_pool2d(x,
615 616 617
               kernel_size,
               stride=None,
               padding=0,
618
               return_mask=False,
619 620 621 622
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    """
623 624
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
625 626 627 628 629 630 631 632

    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
633
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
634 635
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
636
            it must contain two integers, (stride_Height, stride_Width).
637
            Otherwise, the pool stride size will be a square of an int.
638 639 640 641 642 643 644
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
645
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
646
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
647
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
648 649 650 651 652 653 654
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
655 656
   
   Raises:
657 658 659
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
660
    
661 662
    Examples:
        .. code-block:: python
663

C
Chen Long 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
681
    """
682 683
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
684 685 686 687 688 689 690 691 692 693
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
694 695 696 697 698

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
699

700
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
701
        raise ValueError(
702
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
703 704
        )

705
    if in_dygraph_mode():
706
        if return_mask:
D
Double_V 已提交
707 708 709 710 711 712
            output = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
713
            return output if return_mask else output[0]
D
Double_V 已提交
714
        else:
D
Double_V 已提交
715 716 717 718 719 720 721
            output = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
722

723
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
724
    helper = LayerHelper(op_type, **locals())
725
    dtype = helper.input_dtype(input_param_name='x')
726
    pool_out = helper.create_variable_for_type_inference(dtype)
727 728
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
729 730 731 732

    helper.append_op(
        type=op_type,
        inputs={"X": x},
733
        outputs=outputs,
734
        attrs={
735
            "pooling_type": 'max',
736 737 738
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
739
            "paddings": padding,
740 741 742 743
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
744
            "exclusive": True,
745 746 747
            "data_format": data_format,
        })

748
    return (pool_out, mask) if return_mask else pool_out
749 750 751 752 753 754


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
755
               return_mask=False,
756 757 758 759
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
760 761
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
762 763
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
764
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
765
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
766
            is a tuple or list, it must contain three integers,
767
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
768
            Otherwise, the pool kernel size will be the cube of an int.
769 770
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
771
            Otherwise, the pool stride size will be a cube of an int.
772 773 774 775 776 777 778
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
779
        ceil_mode (bool): ${ceil_mode_comment}
780
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
781 782 783 784 785 786
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
787
    
788 789
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
790
    
791 792 793 794
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
795
    
796 797
    Examples:
        .. code-block:: python
798

C
Chen Long 已提交
799 800 801
            import paddle
            import paddle.nn.functional as F
            import numpy as np
802

C
Chen Long 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
817 818 819 820 821 822 823 824
    """
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

825
    channel_last = _channel_last(data_format, 3)
826

827 828
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
829

830
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
831
        raise ValueError(
832
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
833 834
        )

835
    if in_dygraph_mode():
836
        if return_mask:
D
Double_V 已提交
837 838 839 840 841 842
            output = core.ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
843
            return output if return_mask else output[0]
D
Double_V 已提交
844
        else:
D
Double_V 已提交
845 846 847 848 849 850 851
            output = core.ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
852

853
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
854
    helper = LayerHelper(op_type, **locals())
855
    dtype = helper.input_dtype(input_param_name='x')
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

878
    return (pool_out, mask) if return_mask else pool_out
879 880


881
def adaptive_avg_pool1d(x, output_size, name=None):
882
    """
883 884
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
885

886
    Args:
887 888 889 890
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
891
        output_size (int): The target output size. It must be an integer.
892
        name(str, optional): For detailed information, please refer
893 894
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
895
    Returns:
896 897
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
898
    Raises:
899
            ValueError: 'output_size' should be an integer.
900 901
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
917
              import numpy as np
918

919 920 921 922 923
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
924 925
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'adaptive_pool2d')
926 927
    _check_input(x, 3)
    check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
928

929
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
930

931 932
    l_type = "pool2d"
    x = unsqueeze(x, [2])
933
    if in_dygraph_mode():
934 935 936
        pool_out = core.ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                   pool_size, 'adaptive', True)
        return squeeze(pool_out, [2])
937

938
    helper = LayerHelper(l_type, **locals())
939
    dtype = helper.input_dtype(input_param_name='x')
940 941
    pool_out = helper.create_variable_for_type_inference(dtype)

942
    outputs = {"Out": pool_out}
943
    helper.append_op(
944
        type=l_type,
945 946 947
        inputs={"X": x},
        outputs=outputs,
        attrs={
948 949 950
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
951 952
        })

953
    return squeeze(pool_out, [2])
954 955


956 957
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
958 959
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
960 961 962

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
963
                          The data type can be float32 or float64.
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
997

998 999 1000
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1001
            out = paddle.nn.functional.adaptive_avg_pool2d(
1002 1003
                            x = x,
                            output_size=[3, 3])
1004
            # out.shape is [2, 3, 3, 3]
1005 1006
    """
    if not in_dygraph_mode():
1007
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1008
                                 'adaptive_avg_pool2d')
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1024
        output_size = list(output_size)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        output = core.ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1039
    dtype = helper.input_dtype(input_param_name='x')
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1060 1061
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1062 1063 1064

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1065
                          The data type can be float32, float64.
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1105
            out = paddle.nn.functional.adaptive_avg_pool3d(
1106 1107
                            x = x,
                            output_size=[3, 3, 3])
1108
            # out.shape is [2, 3, 3, 3, 3]
1109 1110
    """
    if not in_dygraph_mode():
1111 1112
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1128
        output_size = list(output_size)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        output = core.ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1145
    dtype = helper.input_dtype(input_param_name='x')
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1161 1162


1163
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1164 1165 1166 1167 1168 1169 1170 1171 1172
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1173
        output_size (int): The pool kernel size. The value should be an integer.
1174
        return_mask (bool): If true, the index of max pooling point will be returned along
1175 1176 1177 1178 1179 1180 1181 1182
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1183
            ValueError: 'output_size' should be an integer.
1184 1185
    Examples:
        .. code-block:: python
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1201
              import numpy as np
1202

1203 1204 1205
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1206
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1207 1208 1209 1210 1211 1212
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'adaptive_max_pool1d')
    _check_input(x, 3)
1213
    check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
1214
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    l_type = 'max_pool2d_with_index'

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1225
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1226 1227

    helper = LayerHelper(l_type, **locals())
1228
    dtype = helper.input_dtype(input_param_name='x')
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1245
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1246 1247


1248
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1249 1250 1251
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1252

1253 1254 1255
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1256
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1257
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1258

1259 1260
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1261

1262 1263
        Examples:
            .. code-block:: python
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
    _check_input(x, 4)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1296
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
1297 1298 1299 1300 1301

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1302
        output_size = list(output_size)
1303 1304 1305 1306 1307 1308 1309 1310
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1311
        return pool_out if return_mask else pool_out[0]
1312 1313 1314 1315

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1316
    dtype = helper.input_dtype(input_param_name='x')
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1331
    #return (pool_out, mask) if return_mask else pool_out
1332 1333 1334
    return pool_out


1335
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1336 1337 1338
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1339

1340 1341 1342
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1343
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1344
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1345

1346 1347
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1348

1349 1350
        Examples:
            .. code-block:: python
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
    _check_input(x, 5)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1387
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
1388 1389 1390 1391 1392

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1393
        output_size = list(output_size)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool3d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1404
        return pool_out if return_mask else pool_out[0]
1405 1406 1407 1408

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1409
    dtype = helper.input_dtype(input_param_name='x')
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1425
    return (pool_out, mask) if return_mask else pool_out