pooling.py 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17
from ...fluid.framework import in_dygraph_mode
18 19
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
20
from ...fluid.data_feeder import check_type, check_variable_and_dtype
W
wanghuancoder 已提交
21 22
from paddle import _C_ops
from paddle import _C_ops
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
36 37


38
def _check_instance(x, x_name, types=(int, float)):
39 40 41 42 43 44

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


45 46 47
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
48
    else:
49
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
50 51


52 53 54 55
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
56 57


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
80 81


82 83 84 85 86 87 88 89 90
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
91
                raise ValueError(
92 93 94 95 96 97 98 99 100 101 102 103 104 105
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
106
                raise ValueError(
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
127
    else:
128 129 130 131
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

132

133 134 135 136 137 138 139 140 141 142
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
143 144 145 146 147 148 149
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
150
               exclusive=True,
151 152
               ceil_mode=False,
               name=None):
D
Double_V 已提交
153
    """
154 155
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
156 157 158 159

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
160
                          `L` is the length of the feature. The data type is float32 or float64.
161
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
162
            it must contain an integer.
163
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
164 165 166 167 168 169 170 171
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
172
        exclusive (bool): Whether to exclude padding points in average pooling
173
                          mode, default is `True`.
174
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
175
            If it is set to False, the floor function will be used. The default value is False.
176 177 178 179 180 181 182 183 184
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
185 186
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
187 188 189 190
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
191 192 193 194 195 196 197 198
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
199 200 201
    """
    """NCL to NCHW"""
    data_format = "NCHW"
202 203
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
204
    _check_input(x, 3)
205
    x = unsqueeze(x, [2])
206
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
207 208 209 210 211 212 213
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

214 215 216
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
217

218 219
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
220 221

    if in_dygraph_mode():
W
wanghuancoder 已提交
222
        output = _C_ops.pool2d(
223 224
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
225
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
226
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
227
            data_format)
228 229 230 231
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
232
    dtype = helper.input_dtype(input_param_name='x')
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
249
            "exclusive": exclusive,
250 251 252 253 254 255
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


256
def avg_pool2d(x,
257 258 259 260
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
261
               exclusive=True,
262 263
               divisor_override=None,
               data_format="NCHW",
264 265
               name=None):
    """
266 267
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
268

269
    Args:
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
290
        exclusive (bool): Whether to exclude padding points in average pooling
291 292 293 294 295
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
296 297 298
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
299
    
300 301
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
302
    
303 304 305 306
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
307
    
308 309
    Examples:
        .. code-block:: python
C
Chen Long 已提交
310 311 312 313 314 315 316 317 318 319 320
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
321
    """
322
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
323 324 325
    if stride is None:
        stride = kernel_size
    else:
326
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
327

328 329 330
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
331 332

    if in_dygraph_mode():
W
wanghuancoder 已提交
333 334 335 336 337 338
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', kernel_size,
                               'global_pooling', False, 'padding_algorithm',
                               padding_algorithm, 'strides', stride, 'paddings',
                               padding, 'use_cudnn', True, 'ceil_mode',
                               ceil_mode, 'use_mkldnn', False, 'exclusive',
                               exclusive, 'data_format', data_format)
339 340 341 342 343
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
344

345
    op_type = 'pool2d'
346
    helper = LayerHelper(op_type, **locals())
347
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
348
    dtype = helper.input_dtype(input_param_name='x')
349 350 351 352 353
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
354
        outputs={"Out": pool_out},
355
        attrs={
356
            "pooling_type": "avg",
357 358 359 360 361 362 363 364
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
365
            "exclusive": exclusive,
366 367 368
            "data_format": data_format,
        })

369 370 371 372 373
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
374 375


376 377 378 379 380
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
381
               exclusive=True,
382 383 384
               divisor_override=None,
               data_format="NCDHW",
               name=None):
385
    """
386 387
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
388 389

    Args:
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
408
        exclusive (bool): Whether to exclude padding points in average pooling
409 410 411 412 413
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
414
        name(str, optional): For detailed information, please refer
415 416
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
417
    
418
    Returns:
419
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
420
    
421
    Raises:
422 423 424
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
425
    
426 427
    Examples:
        .. code-block:: python
C
Chen Long 已提交
428
          
429
          import paddle
C
Chen Long 已提交
430 431
          import numpy as np

432 433 434 435 436 437 438 439
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
440
    """
441 442 443 444 445
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
446

447 448 449
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
450 451

    if in_dygraph_mode():
W
wanghuancoder 已提交
452
        output = _C_ops.pool3d(
453 454 455
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
456
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
457
            data_format)
458 459 460 461 462 463
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
464

465 466
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
467
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
468
    dtype = helper.input_dtype(input_param_name='x')
469 470
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
471 472

    helper.append_op(
473
        type=op_type,
474 475 476
        inputs={"X": x},
        outputs=outputs,
        attrs={
477 478 479 480 481 482 483 484 485
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
486
            "exclusive": exclusive,
487
            "data_format": data_format,
488 489
        })

490 491 492 493 494 495
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
496 497


498
def max_pool1d(x,
499 500 501
               kernel_size,
               stride=None,
               padding=0,
502
               return_mask=False,
503 504 505
               ceil_mode=False,
               name=None):
    """
506 507
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
508 509

    Args:
510 511 512
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
513
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
514
            it must contain an integer.
515
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
516 517 518 519 520 521 522 523
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
524
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
525 526
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
527 528 529 530 531
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
532

533 534 535
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
536
        ShapeError: If the input is not a 3-D tensor.
537
        ShapeError: If the output's shape calculated is not greater than 0.
538

539 540
    Examples:
        .. code-block:: python
541

542 543
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
544 545
          import numpy as np

546 547 548
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
549
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
550
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
551
    """
552 553
    """NCL to NCHW"""
    data_format = "NCHW"
554 555
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
556 557 558
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
559 560 561
    if stride is None:
        stride = kernel_size
    else:
562
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
563

564 565
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
566

567 568
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
569 570

    if in_dygraph_mode():
571
        if return_mask:
W
wanghuancoder 已提交
572
            pool_out = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
573 574 575 576 577
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
578 579 580
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
581
        else:
W
wanghuancoder 已提交
582
            pool_out = _C_ops.pool2d(
D
Double_V 已提交
583 584 585 586 587 588 589
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

590
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
591
    helper = LayerHelper(op_type, **locals())
592
    dtype = helper.input_dtype(input_param_name='x')
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

615
    return (squeeze(pool_out, [2]),
616
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
617 618


619
def max_pool2d(x,
620 621 622
               kernel_size,
               stride=None,
               padding=0,
623
               return_mask=False,
624 625 626 627
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    """
628 629
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
630 631 632 633 634 635 636 637

    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
638
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
639 640
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
641
            it must contain two integers, (stride_Height, stride_Width).
642
            Otherwise, the pool stride size will be a square of an int.
643 644 645 646 647 648 649
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
650
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
651
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
652
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
653 654 655 656 657 658 659
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
660 661
   
   Raises:
662 663 664
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
665
    
666 667
    Examples:
        .. code-block:: python
668

C
Chen Long 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
686 687 688 689 690 691 692 693 694 695 696
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
697 698 699 700 701

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
702

703
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
704
        raise ValueError(
705
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
706 707
        )

708
    if in_dygraph_mode():
709
        if return_mask:
W
wanghuancoder 已提交
710
            output = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
711 712 713 714 715
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
716
            return output if return_mask else output[0]
D
Double_V 已提交
717
        else:
W
wanghuancoder 已提交
718
            output = _C_ops.pool2d(
D
Double_V 已提交
719 720 721 722 723 724
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
725

726
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
727
    helper = LayerHelper(op_type, **locals())
728 729
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
730
    dtype = helper.input_dtype(input_param_name='x')
731
    pool_out = helper.create_variable_for_type_inference(dtype)
732 733
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
734 735 736 737

    helper.append_op(
        type=op_type,
        inputs={"X": x},
738
        outputs=outputs,
739
        attrs={
740
            "pooling_type": 'max',
741 742 743
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
744
            "paddings": padding,
745 746 747 748
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
749
            "exclusive": True,
750 751 752
            "data_format": data_format,
        })

753
    return (pool_out, mask) if return_mask else pool_out
754 755 756 757 758 759


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
760
               return_mask=False,
761 762 763 764
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
765 766
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
767 768
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
769
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
770
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
771
            is a tuple or list, it must contain three integers,
772
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
773
            Otherwise, the pool kernel size will be the cube of an int.
774 775
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
776
            Otherwise, the pool stride size will be a cube of an int.
777 778 779 780 781 782 783
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
784
        ceil_mode (bool): ${ceil_mode_comment}
785
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
786 787 788 789 790 791
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
792
    
793 794
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
795
    
796 797 798 799
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
800
    
801 802
    Examples:
        .. code-block:: python
803

C
Chen Long 已提交
804 805 806
            import paddle
            import paddle.nn.functional as F
            import numpy as np
807

C
Chen Long 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
822 823 824 825 826 827 828
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

829
    channel_last = _channel_last(data_format, 3)
830

831 832
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
833

834
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
835
        raise ValueError(
836
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
837 838
        )

839
    if in_dygraph_mode():
840
        if return_mask:
W
wanghuancoder 已提交
841
            output = _C_ops.max_pool3d_with_index(
D
Double_V 已提交
842 843 844 845 846
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
847
            return output if return_mask else output[0]
D
Double_V 已提交
848
        else:
W
wanghuancoder 已提交
849
            output = _C_ops.pool3d(
D
Double_V 已提交
850 851 852 853 854 855
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
856

857
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
858
    helper = LayerHelper(op_type, **locals())
859
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
860
    dtype = helper.input_dtype(input_param_name='x')
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

883
    return (pool_out, mask) if return_mask else pool_out
884 885


886
def adaptive_avg_pool1d(x, output_size, name=None):
887
    """
888 889
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
890

891
    Args:
892 893 894 895
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
896
        output_size (int): The target output size. It must be an integer.
897
        name(str, optional): For detailed information, please refer
898 899
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
900
    Returns:
901 902
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
903
    Raises:
904
            ValueError: 'output_size' should be an integer.
905 906
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
907

908 909 910 911 912 913 914 915 916 917 918 919 920 921
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
922
              import numpy as np
923

924 925 926 927 928
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
929 930 931 932
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
933 934
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
935

936
    x = unsqueeze(x, [2])
937
    if in_dygraph_mode():
W
wanghuancoder 已提交
938 939
        pool_out = _C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                 pool_size, 'adaptive', True)
940
        return squeeze(pool_out, [2])
941

942 943
    l_type = "pool2d"

944
    helper = LayerHelper(l_type, **locals())
945
    dtype = helper.input_dtype(input_param_name='x')
946 947
    pool_out = helper.create_variable_for_type_inference(dtype)

948
    outputs = {"Out": pool_out}
949
    helper.append_op(
950
        type=l_type,
951 952 953
        inputs={"X": x},
        outputs=outputs,
        attrs={
954 955 956
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
957 958
        })

959
    return squeeze(pool_out, [2])
960 961


962 963
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
964 965
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
966 967 968

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
969
                          The data type can be float32 or float64.
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1003

1004 1005 1006
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1007
            out = paddle.nn.functional.adaptive_avg_pool2d(
1008 1009
                            x = x,
                            output_size=[3, 3])
1010
            # out.shape is [2, 3, 3, 3]
1011 1012
    """
    if not in_dygraph_mode():
1013
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1014
                                 'adaptive_avg_pool2d')
1015
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1030
        output_size = list(output_size)
1031 1032 1033 1034 1035 1036
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1037 1038 1039
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1040 1041 1042 1043 1044
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1045
    dtype = helper.input_dtype(input_param_name='x')
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1066 1067
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1068 1069 1070

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1071
                          The data type can be float32, float64.
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1111
            out = paddle.nn.functional.adaptive_avg_pool3d(
1112 1113
                            x = x,
                            output_size=[3, 3, 3])
1114
            # out.shape is [2, 3, 3, 3, 3]
1115 1116
    """
    if not in_dygraph_mode():
1117 1118
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1119
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1134
        output_size = list(output_size)
1135 1136 1137 1138 1139 1140 1141 1142
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1143 1144 1145
        output = _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1146 1147 1148 1149 1150
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1151
    dtype = helper.input_dtype(input_param_name='x')
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1167 1168


1169
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1170 1171 1172 1173 1174 1175 1176 1177 1178
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1179
        output_size (int): The pool kernel size. The value should be an integer.
1180
        return_mask (bool): If true, the index of max pooling point will be returned along
1181 1182 1183 1184 1185 1186 1187 1188
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1189
            ValueError: 'output_size' should be an integer.
1190 1191
    Examples:
        .. code-block:: python
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1207
              import numpy as np
1208

1209 1210 1211
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1212
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1213 1214 1215
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
1216 1217 1218 1219 1220
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1221 1222 1223 1224 1225 1226
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
W
wanghuancoder 已提交
1227
        pool_out = _C_ops.max_pool2d_with_index(
1228 1229
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1230
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1231

1232 1233
    l_type = 'max_pool2d_with_index'

1234
    helper = LayerHelper(l_type, **locals())
1235
    dtype = helper.input_dtype(input_param_name='x')
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1252
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1253 1254


1255
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1256 1257 1258
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1259

1260 1261 1262
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1263
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1264
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1265

1266 1267
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1268

1269 1270
        Examples:
            .. code-block:: python
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1301 1302
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1303 1304 1305 1306 1307 1308
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1309
        output_size = list(output_size)
1310 1311 1312 1313 1314 1315
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1316
        pool_out = _C_ops.max_pool2d_with_index(
1317
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1318
        return pool_out if return_mask else pool_out[0]
1319 1320 1321 1322

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1323
    dtype = helper.input_dtype(input_param_name='x')
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1338
    #return (pool_out, mask) if return_mask else pool_out
1339 1340 1341
    return pool_out


1342
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1343 1344 1345
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1346

1347 1348 1349
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1350
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1351
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1352

1353 1354
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1355

1356 1357
        Examples:
            .. code-block:: python
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1392 1393
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1394 1395 1396 1397 1398 1399
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1400
        output_size = list(output_size)
1401 1402 1403 1404 1405 1406 1407 1408
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1409
        pool_out = _C_ops.max_pool3d_with_index(
1410
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1411
        return pool_out if return_mask else pool_out[0]
1412 1413 1414 1415

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1416
    dtype = helper.input_dtype(input_param_name='x')
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1432
    return (pool_out, mask) if return_mask else pool_out