analysis_predictor.cc 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20 21
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
25
#include "paddle/fluid/framework/ir/pass.h"
26
#include "paddle/fluid/framework/naive_executor.h"
27
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/framework/var_type_traits.h"
29
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
31
#include "paddle/fluid/inference/api/helper.h"
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/memory/memcpy.h"
36
#include "paddle/fluid/platform/cpu_helper.h"
37
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

Y
Yan Chunwei 已提交
40 41
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
42
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
N
nhzlx 已提交
43

Y
Yan Chunwei 已提交
44 45
#endif

T
tensor-tang 已提交
46
DECLARE_bool(profile);
47 48 49

namespace paddle {

N
nhzlx 已提交
50
using inference::Singleton;
N
nhzlx 已提交
51
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
52
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
53 54
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
55
#endif
56

57 58 59 60
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
61 62
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
63 64 65 66 67 68
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
69
bool AnalysisPredictor::Init(
70 71
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
72
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
76 77
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
78 79 80
    platform::EnableProfiler(tracking_device);
  }

81
  // no matter with or without MKLDNN
L
luotao1 已提交
82
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
97
  }
98 99 100 101 102 103 104 105 106

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
107
  if (parent_scope) {
108 109 110
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
111
    scope_ = parent_scope;
112
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
113 114 115
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
116
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
117
  }
118 119 120 121 122
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
123 124
  if (!program) {
    if (!LoadProgramDesc()) return false;
125

126 127 128 129 130 131 132 133 134
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

135 136 137
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
138
    if (config_.ir_optim()) {
139 140 141 142 143 144 145
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
146
  } else {
147 148
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
149 150
    inference_program_ = program;
  }
M
Michal Gallus 已提交
151

152 153 154 155 156
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
157
  if (config_.use_gpu_) {
158
    status_use_gpu_ = true;
159
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
160 161 162 163 164 165 166 167
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
168
                     config_.use_feed_fetch_ops_);
169

170
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
171

172 173 174
  return true;
}

L
luotao1 已提交
175
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
176 177 178 179 180 181 182
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

183 184 185
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
M
minqiyang 已提交
186
  VLOG(3) << "Predictor::predict";
187 188 189 190 191 192
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
193
    return false;
194
  }
M
Michal Gallus 已提交
195

196 197 198
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
199

200 201 202 203
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
204
  }
Y
Yan Chunwei 已提交
205 206 207 208 209 210

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
211
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
212

Y
Yan Chunwei 已提交
213 214 215 216 217 218 219
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
220 221
  return true;
}
222

223 224
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
225
  VLOG(3) << "Predictor::set_feed";
226 227 228 229 230 231 232 233 234 235 236 237 238 239
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
240
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
241
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
242
      input_ptr = input.mutable_data<float>(ddim, place_);
243 244 245 246 247
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

248 249 250 251 252 253
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
254 255 256 257
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
258 259 260
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
261
                   inputs[i].data.length(), dev_ctx->stream());
262 263 264 265
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
266 267 268 269 270 271 272
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
273
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
274 275
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
276 277
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
278 279
      }
      idx = feed_names_[name];
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
310
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
311 312 313
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
314 315 316 317 318
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
319
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
320
    if (type == framework::proto::VarType::FP32) {
321 322
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
323
    } else if (type == framework::proto::VarType::INT64) {
324 325 326 327 328 329
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
    } else {
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
    }
  }
Y
Yan Chunwei 已提交
330 331
  return true;
}
332

333
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
334
void AnalysisPredictor::OptimizeInferenceProgram() {
335 336
  status_program_optimized_ = true;

337 338
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
339
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
340 341 342
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
343
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
344
  // Analyze inference_program
345 346
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
347 348
  } else {
    PADDLE_ENFORCE(
349
        !config_.params_file().empty(),
T
Tao Luo 已提交
350
        "Either model_dir or (param_file, prog_file) should be set.");
351
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
352
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
353

354 355
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
356
  }
357

358
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
359
    LOG(INFO) << "TensorRT subgraph engine is enabled";
360 361 362
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
363
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
364
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
W
Wojciech Uss 已提交
365
  }
366

367
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
368
    LOG(INFO) << "MKLDNN is enabled";
369 370 371
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

372
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
373 374 375 376
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
377
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
378
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
379
  argument_.SetScopeNotOwned(scope_.get());
380 381 382 383 384
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
385
  inference_program_.reset(
386
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
387
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
388
}
389 390

template <>
391 392
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
393
  VLOG(3) << "create AnalysisConfig";
394
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
395
    // 1. GPU memory
396 397 398
    PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
399
    std::vector<std::string> flags;
400 401 402 403 404 405 406 407 408 409 410

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
411 412
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
413
                         std::to_string(fraction_of_gpu_memory);
414
      flags.push_back(flag);
M
minqiyang 已提交
415
      VLOG(3) << "set flag: " << flag;
416 417 418 419 420
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
421
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
422 423
    return nullptr;
  }
G
Gabor Buella 已提交
424
  return predictor;
425 426
}

427
void AnalysisPredictor::PrepareFeedFetch() {
428 429
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
430 431 432 433 434 435 436 437
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
438
      idx2feeds_[idx] = op->Output("Out")[0];
439 440
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
441 442
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
443
      }
Y
Yan Chunwei 已提交
444
      fetches_[idx] = op;
N
nhzlx 已提交
445
      idx2fetches_[idx] = op->Input("X")[0];
446 447 448 449
    }
  }
}

450 451 452 453 454 455 456 457
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

474 475 476 477 478 479 480
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
481 482 483 484 485 486 487
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

488 489 490 491 492 493 494 495 496 497
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
498 499 500 501 502 503
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
504 505 506 507 508
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
509
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
510
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
511
  tensor_array_batch_cleaner_.ResetTensorArray();
512 513 514 515 516
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
517
  std::string filename;
518 519 520
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
521 522 523
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
524
    filename = config_.prog_file();
525
  } else {
526
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
527 528 529 530
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
531
    LOG(ERROR) << string::Sprintf(
532 533
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
534 535
    return false;
  }
536 537 538

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
539
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
540 541 542
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
543 544
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
545 546 547 548 549 550 551 552
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
553
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
554
  }
555 556 557 558 559 560 561
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

583
      if (!config_.params_file().empty()) {
584 585 586 587 588 589
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
590
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
591 592 593 594 595
        op->CheckAttrs();
      }
    }
  }

596
  if (!config_.params_file().empty()) {
597 598 599 600 601 602
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
603
    op->SetAttr("file_path", {config_.params_file()});
604 605 606 607
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
608
  framework::NaiveExecutor e(place_);
609 610 611 612
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

613 614
  return true;
}
615

N
nhzlx 已提交
616
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
617 618 619 620 621 622 623 624
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
625
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
626 627 628 629
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
630 631
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
632
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
633
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
634 635
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
636 637 638
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
639

N
nhzlx 已提交
640
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
641 642 643
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
644

N
nhzlx 已提交
645 646 647 648 649
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
650
      std::string calibration_table_data_path =
N
nhzlx 已提交
651 652 653 654
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
655 656 657 658 659

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
660 661 662 663
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
664
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
665 666
  return true;
}
N
nhzlx 已提交
667
#endif
N
nhzlx 已提交
668

669
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
670
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
671
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
672 673
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
674 675
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
676
#endif
677 678 679 680 681 682 683
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
684 685 686 687 688 689 690

  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
691 692
}

693
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
694
  std::lock_guard<std::mutex> lk(clone_mutex_);
695 696 697 698 699
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
747
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
748 749 750
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
751 752
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
753 754 755 756 757 758 759
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

760
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
761 762 763
  return inference_program_->Proto()->SerializeAsString();
}

Y
Yan Chunwei 已提交
764
template <>
765 766 767 768
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
769 770
}

771
}  // namespace paddle
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
794
USE_TRT_CONVERTER(split);
795 796
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
797
USE_TRT_CONVERTER(leaky_relu);
798
#endif