creation.py 43.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
27
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
28

29
# TODO: define functions to get create a tensor  
30
from ..fluid.layers import linspace  #DEFINE_ALIAS
31
import paddle
32

W
wangchaochaohu 已提交
33
__all__ = [
34
    'to_tensor',
35 36
    'diag',
    #       'get_tensor_from_selected_rows',
37
    'linspace',
38 39 40 41
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
42
    'arange',
43
    'eye',
W
wangchaochaohu 已提交
44
    'full',
P
Pei Yang 已提交
45
    'full_like',
46
    'empty',
47
    'empty_like',
W
WuHaobo 已提交
48 49
    'triu',
    'tril',
50 51
    'meshgrid',
    'assign',
W
wangchaochaohu 已提交
52 53 54
]


55 56 57 58 59 60 61 62
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
63
    and returned. 
64 65 66 67 68 69 70

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
71
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
72
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
73 74
            'complex64' , 'complex128' only for ComplexTensor. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
75 76 77 78 79
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
80
        Tensor: A Tensor or ComplexTensor constructed from ``data`` .
81 82 83 84 85

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
86
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
87 88 89 90 91 92 93

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
94
        paddle.disable_static()
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor: generated_tensor_0
        # - place: CUDAPlace(0)   # allocate on global default place CPU:0
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int64_t
        # - data: [1]

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
        # Tensor: generated_tensor_01
        # - place: CPUPlace
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int
        # - data: [1]

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
        # Tensor: generated_tensor_1
        #   - place: CUDAPinnedPlace
        #   - shape: [2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [1.1 2.2]

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
        # Tensor: generated_tensor_2
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [0.1 0.2 0.3 0.4]

132
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64')
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # ComplexTensor[real]: generated_tensor_0.real
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 2 3 4]
        # ComplexTensor[imag]: generated_tensor_0.imag
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 0 2 0]
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))
188 189 190 191 192 193 194 195 196 197 198 199
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
200 201

    if not np.iscomplexobj(data):
202
        if dtype and convert_dtype(dtype) != data.dtype:
203
            data = data.astype(dtype)
204 205 206 207
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
L
Leo Chen 已提交
208
            zero_copy=False,
209 210 211 212 213 214
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
L
Leo Chen 已提交
215
            zero_copy=False,
216 217 218 219 220
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
L
Leo Chen 已提交
221
            zero_copy=False,
222 223 224 225 226
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


227
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
228
    """
S
swtkiwi 已提交
229

230 231
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
232

P
Pei Yang 已提交
233
    Args:
234 235
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
236
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
237 238
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
239 240
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
241
    Returns:
242
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
243
    
P
Pei Yang 已提交
244 245
    Examples:
        .. code-block:: python
246

P
Pei Yang 已提交
247 248
          import paddle
          import numpy as np
249
          
250
          paddle.disable_static()  # Now we are in imperative mode 
251
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
252
          output = paddle.full_like(input, 2.0)
253 254
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
255 256 257
    """

    if dtype is None:
258
        dtype = x.dtype
259
    else:
260 261 262 263 264
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
265

266
    helper = LayerHelper("full_like", **locals())
267 268 269
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
270 271
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
272
                'full_like/zeros_like/ones_like')
273
    out = helper.create_variable_for_type_inference(dtype=dtype)
274

P
Pei Yang 已提交
275 276
    helper.append_op(
        type='fill_any_like',
277
        inputs={'X': [x]},
278
        attrs={'value': fill_value,
279
               "dtype": dtype},
P
Pei Yang 已提交
280
        outputs={'Out': [out]})
281
    out.stop_gradient = True
P
Pei Yang 已提交
282 283 284
    return out


285
def ones(shape, dtype=None, name=None):
286
    """
S
swtkiwi 已提交
287

288 289 290
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
291
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
292
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
293 294 295
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
296
    Returns:
297
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
298 299 300 301

    Examples:
        .. code-block:: python

302
          import paddle 
303
          paddle.disable_static()
304
          
305
          # default dtype for ones OP
306 307 308 309 310 311 312 313 314
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
315
          # shape is a Tensor
316
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
317 318 319
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
320
    """
321 322 323
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
324 325


326
def ones_like(x, dtype=None, name=None):
327
    """
328
	:alias_main: paddle.ones_like
329
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
330

331 332
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
333 334

    Args:
335 336 337 338 339 340 341 342 343 344
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

345
    Returns:
346 347 348 349 350 351
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
352 353 354 355

    Examples:
        .. code-block:: python

356
            import paddle
357

358
            paddle.disable_static()
359

360
            x = paddle.to_tensor([1,2,3])
361 362
            out1 = paddle.zeros_like(x) # [1., 1., 1.]
            out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
363

364 365
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
366 367


368
def zeros(shape, dtype=None, name=None):
369 370 371 372
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
373
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
374
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
375 376 377
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
378 379

    Returns:
380
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
381 382 383 384 385

    Examples:
        .. code-block:: python

          import paddle
386
          
387
          paddle.disable_static()  # Now we are in imperative mode
388 389 390 391 392 393 394 395 396
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
397
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
398
          data3 = paddle.zeros(shape=shape, dtype='int32') 
399 400
          # [[0 0]
          #  [0 0]]
401
    """
402 403 404
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
405 406


407
def zeros_like(x, dtype=None, name=None):
408
    """
409
	:alias_main: paddle.zeros_like
410
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
411

412 413
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
414 415

    Args:
416 417 418 419 420 421
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
422 423 424
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
425 426

    Returns:
427 428
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
429

430
    Raise:
431 432
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
433

434 435 436
    Examples:
        .. code-block:: python

437
            import paddle
438

439
            paddle.disable_static()
440

441
            x = paddle.to_tensor([1,2,3])
442 443
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
444

445 446
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
447 448


449
def eye(num_rows, num_columns=None, dtype=None, name=None):
450
    """
451
    
452
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
453

454
    Args:
455 456
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
457
            If None, default: num_rows.
W
wangchaochaohu 已提交
458
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
459 460
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
461 462
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
463

464
    Returns:
465
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
466

467 468
    Examples:
        .. code-block:: python
469
          
470
          import paddle
471

472
          paddle.disable_static()  # Now we are in imperative mode
473
          data = paddle.eye(3, dtype='int32')
474 475 476
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
477
          data = paddle.eye(2, 3, dtype='int32')
478 479
          # [[1 0 0]
          #  [0 1 0]]
480 481
    """

482 483 484
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
485
        num_columns = num_rows
486 487 488 489 490
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
491 492


493
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
494
    """
S
swtkiwi 已提交
495

496
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
497 498
    
    Args:
499
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
500 501
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
502 503 504
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
505
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
506
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
507
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
508 509 510
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
511
    Returns:
512
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
513

W
wangchaochaohu 已提交
514 515 516
    Examples:
        .. code-block:: python

517
          import paddle
W
wangchaochaohu 已提交
518

519
          paddle.disable_static()  # Now we are in imperative mode
520 521 522
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
523

524
          # attr shape is a list which contains Tensor.
525
          positive_2 = paddle.full([1], 2, "int32")
526 527
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
528

529
          # attr shape is a Tensor.
530
          shape = paddle.full([2], 2, "int32")
531 532 533
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
534
          
535
          # attr fill_value is a Tensor.
536
          val = paddle.full([1], 2.0, "float32")
537 538 539
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
540 541 542 543 544
    """

    if dtype is None:
        dtype = 'float32'

545
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
546 547


548
def arange(start=0, end=None, step=1, dtype=None, name=None):
549
    """
550
	:alias_main: paddle.arange
551
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
552

553
    This OP returns a 1-D Tensor with spaced values within a given interval.
554

555 556
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
557

558 559
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
560 561

    Parameters:
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
580

581 582 583 584
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
585

586
    Raises:
587
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
588

589 590 591 592
    examples:

        .. code-block:: python

593
        import paddle
594

595
        paddle.disable_static()
596

597 598
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
599

600 601
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
602

603 604 605
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
606

607
        start_var = paddle.to_tensor([3])
608 609 610 611 612 613 614 615 616
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
617

618
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
619 620 621 622 623 624


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
625
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
626 627 628 629 630

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
631
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
655
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
656
    """
657 658
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
659

W
WuHaobo 已提交
660
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
661
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
662 663 664 665
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
666
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
667 668 669 670 671 672 673 674 675 676 677 678
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
679 680
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
681 682 683

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
684
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
685 686 687 688 689

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
690
            import paddle
W
WuHaobo 已提交
691 692 693 694 695 696

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

697
            paddle.disable_static()
Y
yaoxuefeng 已提交
698

699
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
700 701
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
702 703 704 705 706
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
707
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
708 709 710 711 712
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
713
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
714 715 716 717
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

718 719 720
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
721
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
722 723 724 725

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
726
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
727
    """
728 729
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
730

W
WuHaobo 已提交
731
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
732
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
733 734 735 736
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
737
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
738 739 740 741 742 743 744 745 746 747 748 749
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
750 751
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
752 753 754

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
755
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
756 757 758 759 760

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
761
            import paddle
W
WuHaobo 已提交
762 763 764 765 766

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
767

768
            paddle.disable_static()
W
WuHaobo 已提交
769 770

            # example 1, default diagonal
771
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
772
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
773 774 775 776 777
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
778
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
779 780 781 782 783
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
784
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
785 786 787 788 789
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
790 791
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
792
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
793 794

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
795 796


797
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
798
    """
799 800
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
801

802
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
803 804 805
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
806
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
807
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
808 809
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
810 811 812
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
813
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
814 815 816 817 818 819

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
820 821 822 823
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
824

Y
yaoxuefeng 已提交
825 826
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
827 828 829 830 831 832

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

833 834
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
835
    if in_dygraph_mode():
836 837
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
838 839
        return out

840
    name = kwargs.get("name", None)
S
suytingwan 已提交
841 842
    helper = LayerHelper('meshgrid', **locals())

843 844
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
845

846
    for id, input_ in enumerate(args):
S
suytingwan 已提交
847 848 849 850
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

851
    num = len(args)
S
suytingwan 已提交
852
    out = [
853
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
854 855
        for i in range(num)
    ]
856 857
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
858 859

    return out
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
936 937 938 939 940 941 942
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

943 944 945 946 947 948 949 950 951 952 953 954 955
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()   # Now we are in imperative mode
          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.disable_static()   # Now we are in imperative mode
          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        out = core.ops.empty('shape', x.shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183


def assign(x, output=None):
    """
 
 
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
        x (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float16, float32, float64, int32 and int64.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('assign', **locals())
    check_type(x, 'x', (Variable, numpy.ndarray), 'assign')
    if isinstance(x, Variable):
        check_dtype(
            x.dtype, 'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign', inputs={'X': [x]}, outputs={'Out': [output]})
    elif isinstance(x, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(x.dtype)
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in x.flat]
        elif dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in x.flat]
        else:
            raise TypeError(
                "When the type of 'x' in assign is numpy.ndarray, "
                "the data type of 'x' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if x.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={'dtype': dtype,
                   'shape': list(x.shape),
                   value_name: values})

    return output