creation.py 27.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
L
Li Fuchen 已提交
16
from ..fluid.framework import Variable
P
Pei Yang 已提交
17 18 19 20 21 22
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
23
from paddle.common_ops_import import *
24
import paddle
W
wangchaochaohu 已提交
25

26
# TODO: define functions to get create a tensor  
27 28 29
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
30
from ..fluid.layers import create_tensor  #DEFINE_ALIAS
31
from ..fluid.layers import linspace  #DEFINE_ALIAS
32
import paddle
33

W
wangchaochaohu 已提交
34
__all__ = [
35
    'create_tensor',
36 37 38 39 40 41 42
    #       'create_lod_tensor',
    #       'create_random_int_lodtensor',
    'crop_tensor',
    'diag',
    'eye',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
59
    """
60 61
	:alias_main: paddle.full_like
	:alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like
S
swtkiwi 已提交
62

P
Pei Yang 已提交
63 64 65
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.
66

P
Pei Yang 已提交
67
    Args:
68
        x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
69
        fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
70 71 72
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
73 74
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
75
    Returns:
76 77
        out(Variable): The Tensor variable storing the output.
    
78 79 80
    Raises:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32, int64 and None.
    
P
Pei Yang 已提交
81 82
    Examples:
        .. code-block:: python
83

P
Pei Yang 已提交
84 85
          import paddle
          import numpy as np
86 87 88
          
          paddle.enable_imperative()  # Now we are in imperative mode 
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
89
          output = paddle.full_like(input, 2.0)
90 91
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
92 93 94
    """

    if dtype is None:
95
        dtype = x.dtype
96
    else:
97 98 99 100 101
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
102

103 104 105
    helper = LayerHelper("full_like", **locals())
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
106
                'full_like/zeros_like/ones_like')
107
    out = helper.create_variable_for_type_inference(dtype=dtype)
108

P
Pei Yang 已提交
109 110
    helper.append_op(
        type='fill_any_like',
111
        inputs={'X': [x]},
112
        attrs={'value': fill_value,
113
               "dtype": dtype},
P
Pei Yang 已提交
114
        outputs={'Out': [out]})
115
    out.stop_gradient = True
P
Pei Yang 已提交
116 117 118
    return out


119
def ones(shape, dtype=None, name=None):
120
    """
121 122
	:alias_main: paddle.ones
	:alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones
S
swtkiwi 已提交
123

124 125 126
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
127 128 129 130 131
        shape(tuple|list|Variable): Shape of output tensor, the data type of shape is int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
132 133 134
    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.

135 136
    Raises:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32, int64 and None
137
            and the data type of out Tensor must be the same as the dtype. 
138 139
        TypeError: The `shape` must be one of list, tuple and Variable.
    
140 141 142
    Examples:
        .. code-block:: python

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
          import paddle 
          paddle.enable_imperative()
          
          #default dtype for ones OP
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
          #shape is a Variable
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
161
    """
162 163 164
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
165 166


167
def ones_like(x, dtype=None, name=None):
168
    """
169
	:alias_main: paddle.ones_like
170
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
171

172 173
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
174 175

    Args:
176 177 178 179 180 181 182 183 184 185
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

186
    Returns:
187 188 189 190 191 192
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
193 194 195 196

    Examples:
        .. code-block:: python

197 198
        import paddle
        import numpy as np
199

200
        paddle.enable_imperative()
201

202 203 204
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
        out1 = paddle.zeros_like(x) # [1., 1., 1.]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
205

206 207
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
208 209


210
def zeros(shape, dtype=None, name=None):
211
    """
212 213
	:alias_main: paddle.zeros
	:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
S
swtkiwi 已提交
214

215 216 217
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
218
        shape(tuple|list|Variable): Shape of output tensor. The data type of shape is int32 or int64.
219 220 221 222
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
223 224 225 226 227 228 229 230

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.

    Examples:
        .. code-block:: python

          import paddle
231 232
          
          paddle.enable_imperative()  # Now we are in imperative mode
233
          data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
234
          data = paddle.zeros(shape=[2, 2], dtype='int32', name='zeros') # [[0, 0], [0, 0]]
235
    """
236 237 238
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
239 240


241
def zeros_like(x, dtype=None, name=None):
242
    """
243
	:alias_main: paddle.zeros_like
244
	:alias: paddle.zeros_like, paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
245

246 247 248 249
    This function creates a zeros tensor which has identical shape and dtype 
    with `input`.

    Args:
250 251 252 253 254 255 256 257
        x(Variable): The input tensor which specifies shape and dtype. The
            dtype of input can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can
            be set bool, float16, float32, float64, int32, int64. The default
            value is None, the dtype is the same as input.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
258 259 260 261

    Returns:
        out(Variable): The tensor variable storing the output.

262 263 264
    Raise:
        TypeError: If dtype is not bool, float16, float32, float64, int32 or int64.

265 266 267
    Examples:
        .. code-block:: python

268 269
        import paddle
        import numpy as np
270

271
        paddle.enable_imperative()
272

273 274 275
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
        out1 = paddle.zeros_like(x) # [1.0, 1.0, 1.0]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
276

277 278
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
279 280


281
def eye(num_rows, num_columns=None, dtype=None, name=None):
282
    """
283
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
284

285 286 287
    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int, optional): the number of columns in each batch tensor.
288 289 290 291
            If None, default: num_rows.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
292 293
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
294

295 296
    Returns:
        Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
297 298 299 300
    
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The `num_columns` must be non-negative int.
301

302 303 304
    Examples:
        .. code-block:: python
          import paddle
305 306

          paddle.enable_imperative()  # Now we are in imperative mode
307
          data = paddle.eye(3, dtype='int32')
308 309 310
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
311
          data = paddle.eye(2, 3, dtype='int32')
312 313
          # [[1 0 0]
          #  [0 1 0]]
314 315
    """

316 317 318
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
319
        num_columns = num_rows
320 321 322 323 324
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
325 326


327
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
328
    """
329 330
	:alias_main: paddle.full
	:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
S
swtkiwi 已提交
331

332
    This Op return a Tensor with the `fill_value` which size is same as `shape`
W
wangchaochaohu 已提交
333 334 335 336 337 338
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
339 340
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
341 342 343 344 345 346
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
347 348 349 350 351
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
352
        TypeError: The `shape` must be one of Variable, list and tuple.
353
    
W
wangchaochaohu 已提交
354 355 356
    Examples:
        .. code-block:: python

357
          import paddle
W
wangchaochaohu 已提交
358

359
          paddle.enable_imperative()  # Now we are in imperative mode
360 361 362
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
363 364

          # attr shape is a list which contains Variable Tensor.
365
          positive_2 = paddle.fill_constant([1], "int32", 2)
366 367
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
368 369

          # attr shape is an Variable Tensor.
370 371 372 373
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
374
          
375 376 377 378 379
          # attr fill_value is an Variable Tensor.
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
380 381 382 383 384
    """

    if dtype is None:
        dtype = 'float32'

385
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
386 387


388
def arange(start=0, end=None, step=1, dtype=None, name=None):
389
    """
390 391
	:alias_main: paddle.arange
	:alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange
S
swtkiwi 已提交
392

393 394
    Return evenly spaced values within a given interval.

395 396 397 398 399
    Values are generated into the half-open interval [start, stop) with the step.
    (the interval including start but excluding stop).

    If dtype is float32 or float64, we advise adding a small epsilon to end to
    avoid floating point rounding errors when comparing against end.
400 401

    Parameters:
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        start(float|int|Variable): Start of interval. The interval includes
            this value. If end is None, the half-open interval is [0, start).
            If start is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default
            is 0.
        end(float|int|Variable, optional): End of interval. The interval does
            not include this value. When end is Variable, it is a 1-D Tensor
            with shape [1], and it's data type should be one of int32, int64,
            float32, float64. If end is None, the half-open interval is [0, start).
            Default is None.
        step(float|int|Variable, optional): Spacing between values. For any
            out, this is the istance between two adjacent values, out[i+1] - out[i].
            When end is Variable, it is a 1-D Tensor with shape [1], and it's
            data type should be one of int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output tensor, can be float32, float64, int32, int64. If dtype
            is `None` , the data type of out tensor is `int64` . Defaule is None
        name(str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
            Default is None.

    Returns: a 1-D Tensor which is evenly spaced values within a given interval.
        Its data type is set by dtype.
425 426 427
    
    Return type: Variable

428 429 430
    Raises:
        TypeError: If dtype is not float32, float64, int32 or int64.

431 432 433 434
    examples:

        .. code-block:: python

435 436
        import paddle
        import numpy as np
437

438
        paddle.enable_imperative()
439

440 441
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
442

443 444
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
445

446 447 448
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
449

450 451 452 453 454 455 456 457 458 459
        start_var = paddle.imperative.to_variable(np.array([3]))
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
460

461
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
501 502
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
503

W
WuHaobo 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.tensor as tensor
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = tensor.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
            tril = tensor.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
            tril = tensor.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

568 569 570 571
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
572 573 574 575 576 577

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
578 579
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
580

W
WuHaobo 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            import paddle.tensor as tensor

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            triu = tensor.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
            triu = tensor.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
            triu = tensor.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
646 647 648
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
649 650

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
651 652


653
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
654
    """
655 656
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
657

658
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
659 660 661
    vector, and creates N-dimensional grids.
    
    Args:
662
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
663
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
664 665
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
685
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
700 701
          
          paddle.enable_imperative()
S
suytingwan 已提交
702 703 704

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
705 706 707
          tensor_3 = paddle.imperative.to_variable(input_3)
          tensor_4 = paddle.imperative.to_variable(input_4)
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
708 709 710 711 712 713

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

714 715
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
716
    if in_dygraph_mode():
717 718
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
719 720
        return out

721
    name = kwargs.get("name", None)
S
suytingwan 已提交
722 723
    helper = LayerHelper('meshgrid', **locals())

724 725
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
726

727
    for id, input_ in enumerate(args):
S
suytingwan 已提交
728 729 730 731
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

732
    num = len(args)
S
suytingwan 已提交
733
    out = [
734
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
735 736
        for i in range(num)
    ]
737 738
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
739 740

    return out